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Spatial Analysis Neural Network (SANN) is a specified neural network for conducting the
spatial analysis of any type of variable.  It provides a nonparametric mean estimator and also
estimators of higher order statistics such as standard deviation and skewness.  In addition, it
provides a decision-making tool, including an estimator of posterior probability that a spatial
variable at a given point will belong to various classes representing the severity of the problem
of interest, and a Bayesian classifier to define the boundaries of subregions belonging to the
classes. In this paper, the use of SANN as a decision-making tool to investigate an area
contaminated by  viruses in a groundwater system is illustrated. SANN provides two pieces of
information; the contamination probability that the virus decay rate at a given point is less than
a predefined threshold value, and the classification map defining contaminated and non-
contaminated regions. The method is applied to several cases with varying threshold levels  of
the observed virus decay rate values, and the results show graphically the extent of the
contaminated region and the change of the contamination probabilities.
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 INTRODUCTION

Knowing the uncertainty of hydrological and environmental data such as precipitation, soil
properties, and groundwater contaminant concentration is of a great necessity and importance for
solving various problems related to water resources planning and management, groundwater
contamination, and water quality control. A number of methods such as kriging have been suggested
in the literature for hydrological and environmental data (Bras and Rodrigues-Iturbe, 1985).
However, these methods are limited for analysis of complex natural phenomena, because of the
assumptions of stationarity and normality of the underlying variables, and the drawbacks in structural
analysis such as the shadow effect, anisotropic data, nested structure, and the hole effect
(ASCE, 1990). Shin and Salas (1997) introduced an alternative method, called Spatial Analysis
Neural Network (SANN) which has the following characteristics: (1) non parametric estimators of
the conditional mean and higher order moments such as standard deviation and skewness coefficient;
(2) the estimator of the point posterior probability estimator for some classes is predefined and the
Bayesian classifier assigns a class to an arbitrary spatial point. Recently, neural networks have been
successfully used to solve some complex hydrological and environmental problems such as river flow
prediction (Markus et al., 1995), activated sludge prediction (Novotny et al., 1991), determination
of aquifer parameters (Rashid et al., 1992), and groundwater reclamation (Rogers and Dowla, 1994).
The proposed estimators are implemented into a specified multi-layer feed-forward neural network
structure to achieve computational efficiency based on parallel system modeling, and its structure and
operation scheme is summarized briefly in this paper.

Viruses in  groundwater are of interest to the public because many  waterborne diseases are caused
by the contamination of drinking water from groundwater viruses (Craun and Knox, 1985). In
estimating the impact of viruses on groundwater contamination, it has been common practice to use
virus decay rate (or virus inactivation rate). This is the slope of the linear regression curve which is
constructed with time (day) and the number of the infective virus particles remaining after a
corresponding time transformed to a logarithmic base. Then, the unit is described as  -log10 (virus
particles) / day (Yates and Yates, 1989). A small rate means that the viruses can remain in the
groundwater for a long period. In groundwater contamination problems caused by viruses, the area
which has the smaller virus decay rate is considered as the more seriously contaminated area. In these
cases, one may wish to determine the probability that the virus decay rate will be less than a given
truncation level. The truncation level might be a standard level associated with the virus decay rate.
In addition, one may want to know how the contaminated area changes over the region according to
varying truncation levels. For solving those problems related to decision-making of future ground-
water remedial action, we demonstrate the use of the posterior probability estimator and Bayesian
classifier provided by SANN as a decision-making tool for various cases with varying truncation
levels.

SANN MODEL DESCRIPTIONS

In this section, we describe the structure and operation of SANN, which has been developed for
analyzing any type of spatial variables, based on a multi-layer feed-forward neural network form. The
more theoretical derivations and illustrations related to various estimators can be found in Shin (1997)
and Shin and Salas (1997). Suppose that a spatial variable z of interest exists, for which measurements
are available in a two-dimensional domain, i.e. x =[ x,  y ]. We want to obtain some spatial information
at an unknown or unmeasured point x, such as estimations of conditional mean 

)

z (x), its standard
deviation 

)

s (x), posterior probability P[C j | x ] of each class, and class indicator d(x). We have
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N sample observations in the region which are denoted by the observation set {Xn,  Zn | n = 1, �, N}.
For conducting the estimation of posterior probabilities and classification, suppose that a spatial
variable z(x) is classified into Nc  classes, C 1, C 2, �, CNc  where C j denotes the j-th arbitrary class.
The classes are defined by the truncation levels TL(j),  j = 0, 1, �, Nc in which TL(0) = - ∞ and
TL(Nc )  = ∞ .   Based on the definition of the classes, the observation set { Xn, Zn | n=1,�, N} can
be classified as { X(k,j), Z(k,j) | k=1,�, N j and j=1,�,Nc} where k denotes the observed point in each
class C j, and  N j is the number of the observed points belonging to class C j.

For this purpose, SANN is structured as shown in Figure 1. It consists of four layers, in which the
neurons or nodes between layers are interconnected successively by feed-forward direction as shown
in the Figure. The four layers are called: input layer, GKF layer, summation layer, and estimator layer.

Figure 1.  The structure of SANN.

In the following paragraphs, the function and the connection mechanism of each layer will be
explained in detail. Considering a two-dimensional domain, the input layer has two nodes which
represent the x and y coordinates, i.e. the vector x =[x, y]. The connections of the input layer
implement a pass of the input coordinate vector x =[x, y] to the GKF layer, and those are not
weighted. The GKF layer consists of N Gaussian Kernel Function (GKF) nodes. To determine the
posterior probability estimator and the Bayesian classifier, the GKF nodes must be divided up into
Nc class units as shown in Figure 1. For doing this, the observed set { Xn,  Zn | n=1,�, N} is rearranged
as {X(k,j), Z(k,j)| k=1,�, N j and j=1,�,Nc}. X(k,j)is then located at the center of the k-th GKF node in
class unit j  in which the number of the GKF nodes is N j. Then, the transfer or activation functions
of the k-th GKF node in class unit j are expressed as:
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where  = α k j,b g the GKF node output from the kth  node in class unit j ; Dx(k,j) = the Euclidean distance
between the input vector x and the k th  center X(k,j)  in class unit j and the square of it is expressed as
Dx k j,b g

2
= (x-X(k,j) )

T( x - X(k,j) ); and σ x(k,j)  =  the width for the k th GKF node in class unit j.  Each
GKF node has the internal parameters; X(k,j)  = the position of the center of the GKF node in two-
dimensional space, and σ x(k,j) = the smoothing parameter known as the width of the GKF nodes. The
function of the GKF node may be summarized as: the output from each GKF node is a function of
the Euclidean distance from the center X(k,j) to the input point x, and each GKF node only responds
(or activates) when the input pattern falls within its receptive field which is defined by the width of
the GKF node σ x(k,j)(Poggio and Girosi, 1990).  When the input vector x is placed at the center of
the GKF node X(k,j), the output (1) becomes the maximum value which is one.   Otherwise, the
magnitude of the GKF output decreases exponentially, as the input vector is farther from the center.
The outputs of the GKF nodes in the GKF layer are passed to the summation layer with weighted
connections as shown in Figure 2.

Figure 2.  Weighted connections between the GKF nodes and the summation nodes.

Then, the summation layer provides the following outputs:
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where Ζ k j,b g = observed value corresponding  to the k-th  GKF node for class unit j,  
)

z (x)  = estimated
value at the point x,σ z = the smoothing parameter or Gaussian kernel width associated with the
spatial variable z, which must be defined.  The outputs from the summation nodes are passed to
the estimator nodes with unit weights.  Then, as shown in Figure 1, the outputs of estimator nodes
assign the estimations of the conditional mean )z (x), its standard deviation 

)

s (x), and the posterior
probability P[C j | x ] of each class, respectively, as:

)z xb g = ∑
∑

2

1

           (3)

)

s xb g =
∑
∑

3

1

           (4)

)

P C j jx =
∑
∑

4

1

           (5)

Finally, the class indicator d(x) is determined by assigning the class with maximum posterior
probability.

SANN consists of three operation modes, namely, a training mode, an interpolation mode, and a
classification mode. In the training mode, the model structure is constructed according to the classes
defined by the user as described above.  In addition, the model parameters such as the centers and the
widths for all GKF nodes must be determined by using sample observations.  The training procedure
can be summarized as:

(a) Prepare the observation set { Xn, Zn | n= 1,�, N } where N is the number of observations.

(b) Define the classes C j = { C1, C2, �, CNc} with truncation levels { TL(j) | j=1,�, Nc}. Based on
the definition of the classes, classify the observation set into each class C j with {X(k,j), Z(k,j)
| k= 1, �, N j ;  j=1,�, Nc }.

(c) Set the centers of the GKF nodes with the observed coordinate vector X(k,j). For instance, the
center of the k th GKF node in class unit j is assigned to be X(k,j). Here, the class layer is arranged
with Nc class units as shown in Figure 3.

(d) Determine the widths σ x k j,b g  of the GKF nodes. The widths represent the shape of the Gaussian
kernel as well as the diameter of the receptive region. They have a profound effect upon the accuracy
of the estimation (Haykin, 1994). To cover the whole input space as uniformly as possible, centers
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Figure 3. Location of groundwater sample collection sites and values of virus decay rate, Tucson
Arizona (Yates and Yates, 1989).

are separated far away from each other. In this study, the P-nearest neighbor method (Moody and
Darken, 1989) is applied to determine σ x k j,b g   where P is the number of the nearest neighbor points.
First, the root mean square distance (RMSD) between a center X(k,j) and its P-nearest neighbors is
determined for each GKF node:

RMSD
P Pk j i k j

i

P

i k j

T

i

P

i k j, , , ,b g b g b ge j d i= − = − −
= −
∑ ∑1 12

1 1

X X X X X X            (6)

where Xi is the i-th nearest neighbor point from the center X(k,j)of the k-th GKF node in class unit j.
Then the width σ x k j,b g  is given by σ x k j,b g  = RMSD(k,j)/ F  where F is a control factor. Saha and Keeler
(1990) stated that just one nearest neighbor, i.e. P =1, can produce the desired performance.

(e) After setting the centers and the widths of the GKF nodes, the estimates at the observed points

are obtained as )

z (X(k,j)) = 
2 1∑ ∑ . Then, the root mean square error (RMSE) between the

observed values Z(k,j) = Z(X(k,j) ) and the estimated values )z (X(k,j)) is determined as:
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Then, the width of the spatial variable z, σ z  is determined by σ z  = RMSE.

Once the training is completed, the interpolation mode is performed as:

 (a) Enter the set of spatial coordinate vectors {xm |  m=1,�, M} where m is a given point in the region
and M is the number of interpolation points.
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Mean (-log
10 

(virus particles) /day) 0.671

Standard Deviation 0.212

Coefficient of Variation 0.315

Skewness Coefficient -0.310

Minimum 0.151

10 % 0.379

20 % 0.508

30 % 0.600

40 % 0.651

50% 0.684

70 % 0.771

90 % 0.946

Maximum 1.164

Table 1.  Basic Statistics of Observed Virus Decay Rates

(b) Obtain the interpolated value 
)

z (xm), the standard deviation of the estimate 
)

s (xm), the observation
point density ρ (xm), and the posterior probability P[ C j | xm] for each class.

After completing the interpolation mode, then the classification mode is accomplished by using
the estimated posterior probabilities.

 APPLICATION TO DECISION-MAKING OF REGIONAL
GROUNDWATER CONTAMINATION

In this study, we used the virus decay rate data taken from Yates and Yates (1989), which were
estimated at 57 pumping wells in the Tucson area, Arizona.   Those  well locations are indicated
in Figure 3 and the basic statistics of  the virus decay rate in this region are given in Table 1.  SANN
is applied here to identify the boundaries of contaminated areas where remedial actions for
groundwater may be needed. The classification of the contaminated areas has been done
considering different truncation levels.

SANN was trained based on the virus decay rate data obtained from the 57 groundwater samples

as above described. The control parameters were P =1 and F =1.3.  The virus decay rate field 
)

z (x)

and the corresponding standard deviation field 
)

s (x) were determined at 648 points on a 0.5 km x 0.5
km grid system.  Figure 4 (a) shows the interpolated fields.  The contour lines indicate that the western
area has a small virus decay rate, which means that this area may be seriously contaminated  by the
virus.  The corresponding standard deviations are shown in Figure 4(b). The values of the virus decay
rate  z were partitioned into two parts (cases) and the posterior probability that the virus decay rate
at a point x belongs to a given class, P(C j|x), j=1,2 were determined by

P (C 1 | x) = P [  z(x) ≤  TL | x]

                             = the probability that the virus decay rate at x is less or equal than

                                  the truncation level TL (contamination probability)
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P (C 2 | x) = P [ TL  <  z(x) | x]

                             = the  probability that the virus decay rate at x is larger

                                  than the truncation level TL (non-contamination probability)

where the variable  z indicates virus decay rate and TL is a prescribed threshold level.  In addition,
the groundwater area has been classified by considering the following criteria:

 Contaminated Area            :  if  max ( P[C1 | x], P[C2 | x] ) = P[C1 | x]

 Non-Contaminated  Area  :  if  max ( P[C1 | x], P[C2 | x] ) = P[C2 | x]

Four classification scenarios with varying truncation levels of 10 %, 20 %, 30 %, and 40 % of the
observed virus decay rates were determined and the contaminant probability maps are shown in
Figures 5 (a.1), (b.1), (c.1), and (d.1), respectively.  The foregoing information may be useful for
making probabilistic statements about whether a particular area is contaminated or not.  For instance,
the point located at coordinate (2 km, 6 km) has contamination probabilities of about 50 %, 70 %,
80 %, and 85 % for the truncation levels of 10 % (0.379), 20 % (0.508), 30 % (0.6), and 40% (0.651),
respectively.  Furthermore, the contaminated fields were identified with black as shown in Figures
 5 (a.2), (b.2), (c.2), and (d.2) for the truncation levels of 10 %, 20 %, 30 %, and 40 % of the observed
values, respectively.  As expected, the contaminated area becomes larger as the truncation level
increases.   In all cases, the northwestern area appears to be the most seriously contaminated , and
remedial action may be considered.

 SUMMARY AND CONCLUSIONS

In this paper,  the Spatial Analysis Neural Network Method has been applied to test its capability
as a decision-making tool for a groundwater contamination problem.  The variable that measures the
severity of groundwater contamination was virus decay rate, and the 57 observations were taken from
Yates and Yates (1989) over the specified region in Tucson, Arizona.  For the groundwater
contamination problems associated with the spatial variability of virus decay rate, two questions may
often arise in the decision-making processes: (1) what is the probability that the virus decay rate at
a given point is less than the standard level (contamination probability-of-occurrence); and (2) what
are the boundaries dividing the contaminated and non-contaminated areas (optimal-classification
problem).  Those questions were answered by the posterior probability estimator and the Bayesian
classifier provided by SANN.  In this paper, we obtained the contamination probability maps and the
classification maps with varying truncation levels of 10 %, 20 %, 30 %, and 40 %, respectively.  How
this spatial information can help one to make the decisions about the severity of groundwater
contamination, as well as of the contaminated areas to be treated, was illustrated.

(a) Interpolated field (b) Standard deviation field

Figure 4.  Interpolated and standard deviation fields for virus decay rate sample, Tucson, Arizona.
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