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Geostatistics provides set of probabilistic techniques, which are useful to detect and find the
mode of patterns of spatial dependence of attribute values in space, and further use these
models for the assessment of uncertainty about unknown values at locations not sampled. In
this paper, an analysis of geostatistical methods is presented, including a discussion of
possible application and limitations for regional groundwater quality, and its application to
mapping problems.
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INTRODUCTION

Geostatistics is the discipline that provides a set of models and tools for the estimation of block
averages or local averages from sample observations, taking both large scale variation (the trend) and
small scale variation (spatial correlation) into account. The mathematical formulation of the set of
relations connecting independent condition defining variables to the measurement is the model.
Which independent variables are used, and how the measurement variable depends on them is the
model structure. Theory and data should be balanced when choosing the model structure. The
simplest adequate model that is parsimonious in its parameters is usually chosen. Given a set of
relations that define the model structure, we have to choose a statistical procedure to estimate the
characteristic of interest. Statistics is the discipline that provides the theory and tools for deciding on
the data, theory complexity, trade offs inferring population characteristics from limited sample
information, and for assigning accuracy measures to the inference.

Linear Models

For estimating groundwater quality variables at locations where they are not measured, we choose
statistical models, and the family of linear models provides a comprehensive framework for most
commonly used statistical models .A limitation of linear models is that they only allow additive
effects. For groundwater quality variables (being nonnegative and highly skewed) additivity of
effects is often a reasonable assumption after log transforming the measurements. Wider classes of
problems can be formed, e.g. by nonlinear transformation of variables (as in generalized linear
models, McCullagh and Nelder, 1989) or by defining linear relations locally (approximating more
complex relations with local linear models as in generalized additive models, Hastie and Tibshirani,
1990). Comprehensive treatment of linear models is found in Searle (1971), Rao (1973), Christensen
(1987) and in Draper and Smith (1981). Cressie (1992) and Christensen (1991) extended these
treatments to mapping problems.

METHODOLOGY

Linear models provide a flexible way of expressing a wide range of problems in a compact
notation. Consider the two following problems.

1) n groundwater quality measurements are collected randomly from a homogenous spatial
units, and we want to estimate the mean value of the measured variable in this unit and its estimation
variance.

2) n  groundwater quality measurements are collected in two spatial units, q  in the first, n-q in the
second and we want to estimate the mean of each group.

The observations z(xi) at location xi, i=1…n can be written as

1) z(xi) = m+ d(xi),  i=1…n

2) z(xi) = m1+ d(xi),  i=1…q

z(xi) = m2 +d(xi),  i=q+1…n

Here conceptually the measurements are taken as the sum of a structural, systematic part and a
residual, unsystematic part. The structural part consists of (i) m, the mean value of the spatial unit;
(ii) m1 and m2, the mean values of units 1 and 2. The unsystematic part in all the three problems is
d(xi): the deviation of the i-th measurement from the structural part.
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In a linear model the observation z(xi) is represented by a random variable Z(xi), and Z(xi) is
modeled as a sum of its expected value E (Z(xi))= m(xi) and a random deviation from m(xi), e(xi)

Z(xi)=m(xi)+e(xi), E(e(xi))=0,

Note that e refers to residual variation that is not accounted for by m(x).

The expected value m(x) is modeled as a linear function of p unknown, independent variables that
have a causal influence upon Z(x), and p unknown coefficients bj that relate these independent
variables to the observations

m x f xi j
j

p

i j( ) ( ) ,=
=
∑

1

β

which gives, using the vector notation

     Z x f x e xi i i( ) ( ) ( )= +β

With f(xi)=(f1(xi), f2(xi),………,fp(xi)) the row vector with the values of the independent variables
at location xi, and β = (β1,……βp)´, the column vector with the unknown coefficients.

Representing all observations, the model can be written as

Z x F e xxa f a f= +β

With Z(x)=(Z(x1),...Z(xn))´ , Fx = [fj(xi)]nxp =(f1(x),……..,fp(x)) with fj(x)= (fj(x1),……,fj((xn))´,and

e(x)=(e(x1),….,e(xn))´. When we define Fx and β accordingly, this model covers the two simple
problems discussed above:

5) p f x n mi= = =1 1 1, ... ,b g and β

6) p i q f x f x m mi i= ≤ = = = ′2 1 0 0 1 1 2, , , ,if then else andb g a f b g a f b gβ

Thus we can structure the problem by choosing Fx (and thus defining the size of β ). The jth column
in Fx,  fj(x) defines the structure of the relation of the measurement variable z(x) of the jth parameter
β j . If β jis the overall mean as m in problem (1), then f j(x) is a column of ones. If the model contains
categories as in  problem (2) andβ j is the mean of the jth- category, then fj(x) is a binary variable that
for every observation denotes whether it belongs to the j-th category with a one, or not , with a zero.

1. Linear models with independent, identically distributed errors:

In the simplest case we assume that the errors e(x) are independent and identically distributed,
resulting in the model

Z x F e x E e x Cov e x Ixa f a f a f a fcd i= + = =β σ, , ,0 2 (1)

which leads to the ordinary least squares estimates (provided that Fx has full rank.)

$β = ′FH IK ′
−

F F F z xx x x

1 a f          (2a)
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and estimation variances and covariances for β β− $e j

Cov F Fx xβ β σ− = ′FH IK
−)e j

1
2          (2b)

Where σ 2 is estimated by

s2 = z(x)´(I-Fx(Fx´Fx)-1Fx´)z(x)/(n-R) (3)

with R the rank (the number of columns )of Fx.

At an unsampled location x0, given this estimate β̂ , the value of z(x0) (and the mean value of r
independent replications of z(x0) is estimated by

$ $z x f x0 0b g b g= β (4)

with f(x0) the value of the independent variables at location x0. The estimation variance of the
estimator of z(x0) (r=1) or the mean of r independent replications of z(x0) is given by

)(1()( 00
2 xf

r
xr +=σ 2'

0
1' ))()( σxfFF xx

− (5)

2. Linear models with dependent errors

A wider class of problems than the one with independent identically distributed errors is obtained
when the errors are allowed to be dependent.

Z x F e x E e x Cov e x Vxa f a f a fc h a fc h= + − =β , ,0 (6)

With V Cov e x e xi j
nxn

= b g d ie j, .This leads to weighed least square (WLS) estimates of β

$β∗= ′FH IK ′−
−

−F V F F V z xx x x
1

1
1 a f          (7a)

with estimation covariances

Cov F V Fx xβ β− ∗ = ′FH IK−
−

$e j 1
1

         (7b)

 Under this model, given $β∗  by 7(a and b), the estimate of z(x0) is

$ $ $z x f x v V z x Fwls x0 0 0
1b g b g a fe j= ∗+ ′ − ∗−β β            (8)

where ′ =v Cov e x e x Cov e x e xn0 1 0 0b g b gc h b g b gc hd i, , ,K and has estimation variance:
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with C(0) = Var (e(x0)). In statistical terms, the value estimated in (8) is expressed as the sum of the

best linear unbiased estimate of m x m x f x0 0 0b g b g b g, $ $= β and the best linear unbiased predictor of the

(correlated) error, $ $e x v V z x Fx0 0
1b g a fe j= ′ − ∗− β .

3. Multivarable estimation

When s variables Zk(x), k=1……s each follow a linear model Z x F e xk k x k ka f a f= +, β , and the

e xk a fare correlated, then it makes sense to extend the weighed least squares model to allow

multivariable estimation. Without loss of generality, assume s = 2. When z x z x z xa f a f a fc h= ′
1 2,  and

B = ( β 1, β 2)´ are substituted for z(x) and β , and when

f(x0) = 
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with V21 = [Cov(e2(xi),e1(xj))], v21= (Cov(e2(x1),e1(x0)),…,Cov(e2(xn),e1(x0)))´and 0 a conforming
zero matrix or vector, are substituted for f(x0),  Fx,  V and v0, then the left hand side of both (8) and (9)
yield the multi variable estimates: the left hand side of (8) then becomes the estimate
vector ))'(ˆ),(ˆ()(ˆ 02010 xzxzxz =  ,and the left hand side of (9) becomes the (2x2) matrix with estimation
covariance.

Confidence intervals

When the estimation error )(ˆ)( 00 xzxz −  is normally distributed with zero mean and variance )( 0
2 xσ

confidence intervals can be constructed for )( 0xz  (depending on the model used, (4) and (5) , or (8)
and (9)), and the interval

)](2)(ˆ),(2)(ˆ[ 0000 xxzxxz σσ +−

is a 95% confidence interval for z(x0)

RESULTS AND CONCLUSIONS

For mapping groundwater quality, variables for units of size of the measurements, estimating
value that would actually be measured at an unsampled location is not possible because the variation
in the measurements is frequently too large, and consequently we cannot estimate groundwater
quality with a reasonable accuracy at that scale. At a lower spatial resolution, it is possible to estimate
groundwater quality variables because the pattern of local average groundwater quality is smoother
than the pattern of measurements. For the estimation of this smooth pattern of local averages we need
a model that allows spatial local average values.

 In such case, it would  be convenient to use the linear model with independent (IID) errors
presented in the above section, because it is simple and it is supported by a rich body of research in
classical statistics . However if we want to attain independence from a design based argument
(e.g. Hansel et al.; De gruijter ter braak, 1990), then this model is only adequate for estimating the
pattern of local values when (i) the observations are collected randomly from the areas with  constant
values for the f(xi) (i.e. from the categories distinguished or from an area with a specific value for the
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regressors) (ii) the areas for which we want estimates of a spatial average coincide with these areas
of constant f(xi). These conditions limit the suitability of the above model for estimating local
averages severely.

Thus for mapping of groundwater quality variables, one should continue with models that allow
errors to be substantially dependent. Moreover, although part of the residual errors can usually be
attributed to measurement error, it is very likely that in a linear model intended for spatial estimation,
a large proportion of the residual, unexplained variation is caused by unknown spatially smooth
factors resulting in a spatially dependent error. For mapping purposes, we can use this spatial
dependence to capture the spatial structure present in the measurements beyond the part explained
by the independent variables. Average values of arbitrarily shaped elements can be estimated
efficiently if we are willing to assume a model with a spatially dependent error structure.
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