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The probabilistic approach is used to simulate particle tracking in a dual porosity medium
made of chalk granules with both intergranular and intragranular porosities. Dissolved
solutes move by advection-dispersion in the intergranular pore space and may diffuse into
intergranular pore space where the advective flux is negligible. It is shown that the particle
tracking in the chalky medium is a nonmarkovian process, i.e. that the future position of a
particle depends on its former positions. The probability density function of the position of the
particle depends on a power of the distance. Using Einstein’s rule for the dispersion coefficient,
it is shown that the dispersivity exhibits a scale effect according to Mercado’s result, i.e. a
ballistic dispersion. Experiments by dye tracer tests on a column have been performed for
different distances and discharges. The computed results are in good agreement with the
experimental data.
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INTRODUCTION

The probabilistic approach of particle tracking in the natural environment is not new. It was used
successfully in sedimentary transport (Yang and Sayre, 1971), in solute transfer in porous medium
without sorption phenomena (Todorovic, 1970) and in solutes transfer in fissured medium
(Neretnieks, 2002). The modeling of particle tracking in a porous or fissured medium with mobile/
immobile exchanges is very difficult when the partition coefficients are difficult to estimate. The
modeling of such a process is carried out by the resolution of the dispersion equation which has
to take into account the exchange phenomena between mobile and immobile water (Sudicky and
Frind, 1982), (Maloszewski and Zuber ,1991), (Pang et al., 2003). According to these authors, the
models are very sensitive to the partition coefficient values. The error on these coefficients must
be very  weak in order to keep the model reliable. Furthermore, particle tracking modeling using
the classical solution of the dispersion equation leads to an increase in apparent dispersivity with
the distance if exchange  phenomena occur but are not taken into account. The aim of this paper
is to derive dispersion equations from a Bayesian point of view which could be an alternative to the
traditional numerical models of particle tracking simulation in media with dual porosity.

THEORETICAL ASPECT

According to the definition of conditional probability, the probability of a particle to be in the
interval {x, x+ ∆x} is:
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If f is the probability density function (PDF) of the random variable x and F the corresponding
cumulative distribution function (CDF), (1) can be expressed by :
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The properties of the saturated medium and particularly its exchange capacity must be known

to estimate ( )P X x x
X x

≤ +
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∆ .

If mobile/immobile exchanges occur in a medium with a random distribution of immobile water

sites, we consider that the probability ( )P X x x
X x

≤ +
>

∆ , for a particle to meet a site of

immobile water when it has covered a distance x, increases when ∆x increases and when the
distance covered by the particle is longer. That can be expressed by a general probabilistic

equation: ( )P X x x
X x b x xa≤ +

> =∆ ∆. .            (4)

By combining (1), (2),(3) and (4), the functions f and F are (Appendix 1) :
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The random variable x does not present a Markovian character (Appendix 2). The future state
of the particle depends on the former state and the random variables xi are dependent. The function
f checks:

f x dx a( ) = ∀
+∞

∫ 1
0

           (6)

 If one assumes the instantaneous injection of a mass M of particles, the mass conservation
equation gives :

∫
+∞

=
0

..).,( MdxStxCR ω            (7)

where S (L2) is the cross section area of the medium and ω the kinematic porosity. CR(x,t) (M.L-

3) is the resident concentration at distance x and time t. The flow Q (L3.T-1) is the product of the
average velocity U (L.T-1), the cross section area and the kinematic porosity.

The following equation checks (7) :
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The mass flux J(t) (M.T-1) at a time t and a distance x can be expressed by:

ω..).,()( S
t
xtxCtJ R=            (9)

x/t is the mean velocity of the particles which reach the distance x at time t.

The flux concentration can be expressed by:

Q
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Combining (8), (9) and (10 ), the equation of the flux concentration is:
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Equation (8) has to be used to compute the mean and modal distance and the space variance.

By solving 
∂
∂
C
x

= 0
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for (8), the modal distance, for which the concentration is the strongest, is:
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The mean distance, i.e. the centroid of the cloud of particles, is expressed by:
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Γ is the Gamma function. (13) makes it possible to express the coefficient b:

a
a

a

a

akwith
tU

kb
+

+

+









+
Γ

=




=

1

1

)1(

1
1

.          (14)

Combining (11) and (14), Equation (11) can be rewritten:
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Equation (15) checks:
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While solving
∂
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C
t

= 0 in (15), the average velocity U and the maximum concentration can be

determined according to k, the modal time tm, the distance x and the power number a:
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EXPERIMENTAL METHOD

We used tracer flow column experiments to test our probabilistic approach. The column length
is 1934 mm and its diameter 90 mm. Two piezometers are located in the column; the first one is
at 143 mm from the inlet, the second one at 825 mm from the first one. The tracer is injected with
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a syringe in the first piezometer. The injection is followed by a water flush to approximate a delta
function input.

The tracer tests were carried out using a Senonian Chalk. The grain size range between 2 and 3.15
mm. 10.7 kg of chalk were used to fill the 12.2 liters of the column. Using a density value of 1590
kg/m3 for chalk, the inferred total porosity is 45%.

The tracer tests were carried out for different discharges and masses of fluorescein (Tables 1
and 2). The power number a is computed by Equation (18) and k is computed by Equation (14). An
example of comparison between computed concentrations (Equation (15)) and experimental
concentrations is given in Figure 1 and shows a good fit between experimental and theoretical
values. The k values range between 1.23204 and 1.24000 The a values range between 0.83117 and
0.94628. (Tables 1 and 2)

SCALE EFFECT OF THE DISPERSIVITY

The longitudinal variance of the cloud makes it possible to classify the dispersion:
ασ tx ∞2          (19)

If α =1, the dispersion is fickian; if α <1, the dispersion is subdiffusive and if α>1, the
dispersion is superdiffusive. In the particular case α = 2, the dispersion is ballistic.

Einstein’s equation (Einstein, 1905) makes it possible to express the space variance and the
dispersion coefficient:

dt
d

D x
2

.
2
1 σ

=          (20)

D is the longitudinal dispersion coefficient. Using Equation (5), the variance is:
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Equation (21) shows that the dispersion is ballistic.

According to (20), the longitudinal dispersion coefficient is:
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The longitudinal dispersivity is:
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Table 1.  Experimental and computed data for 1791 mm.
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Figure 1.  Experimental and computed concentrations versus time for tracer test in chalk. Q =148800
mm3/min; X= 1791 mm.

Q (mm3 /min) M (mg) tm (min) Concentration max (mg/l) a k

6310 3.434 67 0.526 0.94628 1.23204

148800 3.892 25.8 0.62 0.85231 1.23890

Q (mm3 /min) M (mg) tm (min) Concentration max (mg/l) a k

63160 3.434 27.6 1.18 0.86293 1.2400

148800 3.892 11.2 1.438 0.83117 1.23645

Table 2. Experimental and computed data for 825mm.
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Equation (23) shows that the longitudinal dispersivity increases linearly with the mean travel
distance U.t which is consistent with Mercado’s result (Mercado, 1967) obtained for a stratified
aquifer.

CONCLUSION

The probabilistic model presented in this paper reproduces laboratory tracer column experiments
for granular materials with a dual porosity. Unlike complex numerical models, the probabilistic
model seems not to be very sensitive to the partition coefficients used to calibrate the dispersion
and sorption phenomena. However our results do not prejudge of the validity of the model on the
field scale. Nevertheless, our experiments suggest that this model could be an alternative to the
traditional numerical models. Using the Einstein’s equation, the dispersivity has been derived and
exhibits a scale effect. It increases linearly with the mean travel distance, that is consistent with
Mercado’s result (Mercado, 1967) obtained for a stratified aquifer. Work is in progress to test our
model on more complex heterogeneous media.
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Appendix 1 :
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Appendix 2 :
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