JOURNAL OF ENVIRONMENTAL HYDROLOGY

The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com

VOLUME 16

2008

GEOLOGICAL PROSPECTS FOR URANIUM ORE DEPOSITS IN LEBANON

AminShaban

National Council for Scientific Research Beirut, Lebanon

Uranium exists in nature only as tetravalent (U^{4+}) or hexavalent (U^{6+}) compounds. From a geological point of view, the primary uranium mineral appears as tetravalent and is often found in acidic igneous rocks. It is converted in the surface oxidation zone to a secondary mineral where it becomes hexavalent. The latter is soluble and can be easily carried by surface or subsurface water until reenters a reducing environment where it deposits again in tetravalent form. Even though no acidic igneous rocks occur in the exposed rock formations of Lebanon, the occurrence of sandstone as a derivative of these rocks makes it favorable for uranium occurrence. In addition, the interbedding of shales, clays and lignite (as reducing agents) contribute to the favorability of uranium ore deposition. The location of Lebanon within the Mediterranean phosphatic belt, where uranium deposits often exist, adds another possibility for the natural occurrence of uranium ores. A ground radiometric survey, using a portable scintillometer has been carried out on selective sites in Lebanon, with a special emphasis on Neocomian-Barremian (sandstone and clay), Albian (shale) and Senonian (Marl) rock formations. Preliminary results show anomalous gamma radiation, which exceeded in many instances three times the background radiometric values. This is well pronounced in sandstone and clayey rocks. A detailed investigation should be carried out using gamma-ray spectrometers to build up a comprehensive survey on radioactivity type and concentration in the rocks of Lebanon.

INTRODUCTION

There are more than 200 radioactive isotopes in nature, but only 20 to 25 of them are used in energy generation. Uranium has become the most valuable one, notably for energy production purposes. In a worldwide view, the estimated amount of uranium is about two billion tons of ore deposits, which are believed to exist mainly in underdeveloped counties.

Currently, there are about 440 operating reactors in the world, which are concentrated mainly in the east USA and west Europe. Today uranium markets remain uncertain. Some is starting to come to world markets from the military inventories of the United States and Russia as a result of international agreements to dismantle a part of the huge stocks of nuclear weapons. Unlike other commodities, the demand for uranium is almost entirely for the generation of electricity.

Naturally occurring uranium contains mostly two isotopes, $_{92}U^{238}$ (99.3%), $_{92}U^{235}$ (0.7%), and traces of $_{92}U^{234}$. Each has its own chemical and radioactive properties as shown in Table 1.

Isotope	# of	# of	Atomic	Half life	Decay constant	Radiation
	electrons	neutrons	weight	(year)	(sec^{-1})	
$_{92}U^{235}$	92	143	235	7.1×10^8	3.1 x 10 ⁻¹⁷	α , γ , spontaneous
$_{02}U^{238}$	92	146	238	4.5×10^8	4.0×10^{-18}	fission

Table 1. Major chemical and radioactive characteristics of uranium isotopes.

The isotope ${}_{92}U^{235}$ is fissile, and if it irradiates with thermal (slow) neutrons, the nucleus will break up into two nuclei and liberate at least more energy than the chemical reaction. The fission of a kilogram of uranium releases as much as energy that obtained by burning 2500 tons of coal, or that generated in ten days by a 100,000 KW power station. This is the essential reason that makes uranium an important alternative source of energy. Below is an example showing the released energy.

$$_{92}U^{235} + ^{\circ}n^{1} \rightarrow _{56}B^{140} + _{30}K^{92} + 3(^{\circ}n^{1}) + 10^{10} (\text{KJmole}^{-1} \text{``Energy''})$$

In nature, uranium occurs as primary and secondary minerals. Most primary ones are those formed by the heated solutions coming up from deep within the Earth. These are mainly in veins and acidic igneous rocks, and more likely in granite and other related intrusive rocks such as pegmatite and rhyolite. The chief primary compound of uranium is uranium dioxide, UO_2 , which makes up the mineral uraninite, also known as pitchblende.

The secondary minerals are those formed by the influence of several physical elements and processes, mainly weathering and groundwater. In the zone of weathering, uranium dioxides are converted to one or more of the bright, yellow colored oxidized uranium minerals including tyuyamunite $Ca(Uo_2)_2(VO_4)_2.6H_2O$, carnotite $KUO_2.VO_4$ and autunite $Ca(Uo_2)_2(PO_4)_2.8H_2O$.

Uranium has many valence states (+2, 3+, +4, +5, and +6), but U⁴⁺ and U⁶⁺ are the most abundant ions. Usually primary minerals of uranium U⁴⁺ are present in tetravalent (Uranous) form, in which they are black, bluish or greenish black. As the erosion of surfaces of the area are lowered, oxygen and water from the air and various ions from the host rocks react with primary minerals to produce more highly oxidized compounds. Uranium is oxidized to the hexavalent state U⁶⁺ (Uranyl) as carbonates, phosphates, sulfates, arsenates, and vanadates.

In the absence of suitable reductants or absorbents, uranium compounds of the high oxidized state are relatively soluble in groundwater and are ready to move vertically or laterally until reaching a reducing environment where they precipitate. A reducing environment is often characterized by H_2S , hydrocarbons, petrified wood, or any other organic matter. Uranyl ions may enter the reducing environment, where U^{6+} is reduced to U^{4+} , which is insoluble in the reducing

environment and results in uranium deposition (Figure 1). Prospecting for uranium ore deposits requires determining two major factors: the source of the mineral and the environment of deposition, which are mainly governed by different geochemical processes.

MATERIALS AND METHOD

Occurrence of uranium ores in Lebanon

Proposing the occurrence of uranium deposits in Lebanon is based on a suitable environment of deposition for uranium ores among the rock sequences in Lebanon. Also, it is considered that the sequences are similar to neighboring regions, which have the same geologic characteristics. Therefore, there is a likelihood that uranium minerals occur in Lebanon based on its geologic characteristics.

Primary source rocks are not exposed on the stratigraphic sequence of Lebanon, but their derivatives occur, as well as a suitable environment of deposition. The generalized required conditions for uranium ore deposition were compared with the conditions in Lebanon in Table 2. They were approached according to the source rocks (primary and secondary) as well as the environment of deposition, which includes several reducing environments.

In addition, the structural and stratigraphic controls were considered. Therefore, it is obvious that some of the exposed rocks in Lebanon are suitable for the occurrence of uranium minerals. These are primarily sandstone and phosphate deposits. In addition, extrusive igneous veins and dykes within basaltic rocks are promising sources.

The primary source rock occurs in Lebanon as veins and dykes in different localities within the basaltic rocks. These rocks occupy a large geographic distribution and are found at different levels of the rock sequence, certainly within the rocks of the Pliocene (P), Neocomian-Barremian $(C_1)/$

Figure 1. Schematic figure showing uranium mobility.

Journal of Environmental Hydrology

Lower Aptian (C_{2a}) and Oxfordian (J_5) .

Accordingly, the proposed secondary source rock is divided into two rock types. These are:

Sandstone rocks, which are well known to be derived from acidic igneous extrusives, as a parent rock, with a special emphasis on granites and pegmatites (Adler, 1974). In Lebanon, sandstone rocks exist, and they are included within a thick rock succession (~200m) of the Neocomian-Barremian age C_1 (Figure 2),

Phosphate deposits, which are believed to occur in Lebanon, according to the concept of the extended Mediterranean phosphatic belt. It includes all southern Mediterranean regions from Turkey transecting Palestine, Egypt, and reaching Morocco. In these regions, shallow marine phosphate deposits are well known, and economically exploited. Several studies have indicated the presence of uranium minerals of commercial value within these deposits in Turkey (Erdem et al., 1995), in Jordan (Abed, 1981), in Libya (Hangari, 1983), and in Morocco (Berry, 1985).

In Lebanon, studies of phosphate deposits are rare and inadequate to form a complete picture, but all preliminary investigations have pointed to the possible existence of phosphate deposits (Dubertret, 1953, 1955; Beydoun, 1976, 1988; Ellezian, 1980; and Shaban, 1991). All these studies focused on phosphate deposition in the marly rocks of the Eocene and much more favorably in the Senonian marls (C_{ϵ}).

Another essential condition for uranium is the reducing environment, which has many aspects in Lebanon, notably in silicate rocks (e.g. clay and shale). These rocks often contain organic

Required conditions		Availabili	ty in Lebanon		
		Description	Geology/location		
		No primary rocks available	a) No exposed acidic rocks in		
	Primary	(such as granite and other acidic	Lebanon,		
	mineral	igneous rocks) except some	b) Dykes and vein exist,		
Source rock		local dykes and veins.	notably where basalt		
Source rook			occurs.		
		A) Sandstone, as a detritus	C) Sandstone of the		
		of granite rocks,	Neocomian-Berrmian age		
	Sacandamy	B) Phosphate deposits of	(C_1) , D) Dhagmhatag of the Somerica		
minoral		shallow mailine	D) Phosphates of the Schonlan $marls(C)$		
	mmerar	due to the location in	E) Marly limestone of the		
		the Mediterranean	E) Marty infestoric of the Focene and Miocene are		
		phosphatic belt)	favorable for phosphate		
		phospharie bert).	deposits.		
		F) Clay, shale and lignite	I) Clays and lignite exist in		
	Reducing	are available,	C_1 and C_3 ,		
Environment of	environment	G) Rocks with high	J) Organic matter found in		
denosition		content of organic	different and local		
deposition		matter,	formations,		
		H) Hydrocarbon frictions.	K) Hydrocarbons exist as asphalt in South of Bekaa.		
	Structural	Faults, fissures and joints	They structures and lithologic		
	controls		elements are widely occurred in		
	Stratigraphic	L) Contacts of different	different places and rock		
	controls	lithologic types,	formations		
		M) Unconformities.			

Table 2. Available conditions for uranium ore deposition in Lebanon.

reducing agent and are known to occur as asphalt patches near Sohmor and the southern Bekaa region. In addition, occurrence is more favorable if the environment of deposition is structurally and

In addition, occurrence is more favorable if the environment of deposition is structurally and lithologically controlled. These conditions occur frequently in the Lebanese geological setting. Structures such as fissure, faults, joints and folded structures are common.

Considering the conditions for uranium occurrence in the rocks in Lebanon facilitates the planning of a radiometric survey, and makes exploration much less time consuming.

Radiometric survey

Prospecting for radioactive elements can be achieved by using the Geiger counter, or a more modified instrument called the scintillometer. These instruments cannot distinguish between different types of radioactive elements. For this purpose, a gamma-Ray spectrometer is often used to identify the radioactive element type.

In Lebanon, no radiometric survey had been conducted prior to this one, which was done in 1990. It is still a limited ground survey and needs more detailed application to include all favorable rock exposures in Lebanon over a large geographic extent. Moreover, the type of radioactivity should be confirmed using a spectrometer or X-ray diffraction. This survey used a scintillometer, which was provided by the American University of Beirut.

1. Scintillometer survey

The scintillometer survey followed several steps.

1. Rock types and geologic conditions for uranium ore deposition were primarily taken into account to select the route of the survey.

2. A background count was obtained first for the area under investigation. In this survey, the background counts were achieved by taking several readings of 2-3 minutes and at different times (preferably each hour) during the day (preferably over several days). In addition, these readings were done at locations that were well removed from the vicinity of the suspected deposits. The background count is a result of a residual effect (due to elements in the counter) and a cosmic effect due to cosmic radioactivity.

3. The survey followed linear traverses, and a grid method was applied depending on the area topography and size.

4. The counter was held parallel to the ground surface to give high precision.

- 5. The counter was close to the measured body (5-10cm).
- 6. Readings must range between at least 2 minutes and at most 5 minutes.

7. In case of a maximum and minimum reading for the same body, the average reading was used.

8. The residual and cosmic backgrounds were subtracted from the major reading.

9. The walking speed of the counter did not exceed 3 km per hour regardless of the sample spacing.

10. In the case of an anomalous reading, it was preferable to move a distance from the site, then return to obtain a new reading.

11. Soil has radioactive elements, thus soil covered areas were avoided as much as possible.

2. Anomalous readings

Usually, any reading which is at least three times greater than the background can be considered anomalous. Nevertheless, a known method to measure the anomalous reading was often applied as follows:

- Calculate the background (or the mean), X.
- Calculate the standard deviation, δ .

The anomalous reading equals 2 δ + X.

In the 1990 survey, this general approach of identifying anomalous readings was applied, based on exceeding the background reading by three times.

3. Site selection

At the time of the survey, several man-made conditions existed, thus limiting the survey approach and its geographical coverage. Only selected sites were investigated taking into account the natural conditions for uranium deposits in the rock exposures.

Journal of Environmental Hydrology

Three major areas were surveyed. These are: Chekka (North Lebanon), Mansourieh-Baábdat road (Middle Lebanon) and Saida-Zaharani and Nabatieh area (South Lebanon).

RESULTS AND CONCLUSION

At these three areas there were 126 readings (sites). These were distributed as 34, 38 and 54 readings from north to middle to south Lebanon. The sites were selected at different sedimentary rock formations. The investigation on igneous rocks was not possible due to accessibility problems. The focus was on the sand/clay interface, marly facies with dominant glauconite, and rocks with high content of organic matter, and on lithologic boundaries.

The results of the survey were tabulated and accompanied by figures (see Tables 3, 4 and 5 and Figures 3, 4 and 5). They show the results of the radiometric survey in Lebanon at the three selected and accessible areas.

Site No.	Coord	inates	Gamma rea (Count/s	dings ec)	Geologic formation	Proposed element for uranium deposition
	Latitude	Longitude	Background	Site		
1	34° 15' 23"	35° 39' 31"		125	C ₆ /C ₅	
2	34° 15' 11"	35° 39' 10"	65	110	C ₆ /m ₂	
3	34° 15' 35"	35° 40' 02"	00	205	C ₆	This formation (Senonian, C ₆) is believed
4	34° 15' 17"	35° 40' 43"		220	C ₆	contain phosphate deposits of the shallow
5	34° 16' 23"	35° 40' 04"		170	C ₆	The environment.
6	34° 16' 17"	35° 40' 08"		265	C ₆	facies which are well known in containing
7	34° 16' 09"	35° 40' 11"	55	185	C_6	phosphate deposits in the neighboring regions.
8	34° 16' 48"	35° 40' 28"		90	C ₆	
9	34° 16' 19"	35° 41' 35"		75	C ₆ /C ₅	
10	34° 16' 36"	35° 41' 08"		80	C_6	
11	34° 17' 21"	35° 41' 11"	60	225	C ₆	Existence of lignite and organic matter and
10	2 40 171 101	250 411 101		0.5	G	anticipated phosphates.
12	34° 17' 10"	35° 41' 18"	65	95	C_6	
15	34 10 32	33 42 01	65	155	C ₆	
14	34° 17' 32"	35° 41' 32"		145	C ₆	
15	34° 17' 36"	35° 41' 18"	55	210	C_6	Existence of lignite and organic matter and
16	$34^{\circ} 17' 21''$	$35^{\circ} 42^{\circ} 01^{\circ}$		165	C_6	anterpace prosphaces.
1/	240 19 02"	35° 42' 00"	0.0	105	C_6	
10	34 18 02	35° 42' 09	80	93	C_6	
20	34° 16' 56"	35° 42' 13	65	135	C_6	•
20	34° 18' 12"	35° 42' 41	05	185	C	
21	249 1 (1 22)	259 441 271	85	140	C_6	-
22	<u>34'10'32</u> <u>24°16'36''</u>	35° 44' 37		140	C_6/C_5	
23	<u>34 10 30</u> <u>34° 16' 20"</u>	33 44 20 $35^{\circ} 44' 11''$	60	123	C_6	-
24	34° 16' 13"	35° 43' 51"		95	C_6	•
25	34° 15' 42"	35° 44' 39"	115	210		
27	34° 15' 01"	35° 43' 14"	115	185	C_6	
28	34° 16' 16"	35° 44' 11"	95	175	C ₆	
29	34° 16' 12"	35° 43' 17"	70	185	Ce	
30	34° 16' 18"	35° 43' 22"	70	180	C_6/C_5	
31	34° 16' 20"	35° 42' 44"		155	C ₆	
32	34° 16' 31"	35° 43' 24"	75	150	Č ₆	1
33	34° 16' 38"	35° 43' 16"	15	175	C_6	1
34	34° 16' 27"	35° 43' 28"		140	C ₆]

Table 3. Results of the radiometric survey in Chekka area (North Lebanon).

Site	Coord	linates	Gamma read	ings	Geologic	Proposed element for uranium deposition
No.			(Count/se	c) formation		
	Latitude	Longitude	Background	Site		
1	33° 51' 39"	35° 35' 28"		265	C ₁	Sandstone as a source rock mixed with
2	33° 51' 37"	35° 35' 37"	85	325	C ₁	clay as reducing environment
3	33° 51' 02"	35° 35' 38"	05	195	C ₁	
4	33° 51' 09"	35° 35' 31"		305	C ₁	Sandstone/clay contact
5	33° 51' 38"	35° 36' 03"	75	205	C ₁	
6	33° 51' 12"	35° 35' 05"		200	C ₁	
7	33° 51' 34"	35° 35' 27"	70	235	C_1/C_{2a}	Sandstone as a source rock at a contact
8	33° 51' 35"	35° 36' 08"	70	285	C ₁	with clay and organic matter as reducing
9	33° 51' 33"	35° 36' 11"		305	C ₁	environment
10	33° 52' 17"	35° 36' 18"		220	C_1/C_{2a}	Sandstone/clay contact
11	33° 52' 19"	35° 36' 20"	70	185	C _{2a}	
12	33° 52' 16"	35° 36' 41"		170	C ₁	
13	33° 52' 49"	35° 36' 22"		285	C ₁	
14	33° 51' 34"	35° 36' 19"	105	255	C ₁]
15	33° 52' 16"	35° 36' 44"	100	300	C_1/C_{2a}	
16	33° 52' 17"	35° 37' 16"		285	C ₁]
17	33° 52' 15"	35° 37' 19"		310	C ₁	Clastic rocks and clay
18	33° 52' 21"	35° 37' 21"	90	255	C_1/C_{2a}	
19	33° 52' 13"	35° 37' 46"	<i>J</i> 0	260	C ₁]
20	33° 52' 15"	35° 37' 43"		375	C ₁	Sandstone as a source rock mixed with
21	33° 52' 14"	35° 37' 40"		380	C ₁	clay as reducing environment
22	33° 52' 19"	35° 37' 23"		295	C ₁	
23	33° 53' 28"	35° 37' 21"		210	C ₁	
24	33° 53' 25"	35° 37' 40"	75	285	C ₁	Lignite in contact with sandstone
25	33° 53' 22"	35° 37' 41"		220	C ₁	
26	33° 52' 17"	35° 38' 31"		200	C ₁	Organic matter and lignite with
27	33° 52' 12"	35° 37' 40"	65	240	C ₁	sandstone as a source rock
28	33° 52' 14"	35° 39' 01"	05	165	C ₁	
29	33° 53' 18"	35° 38' 27"		285	C ₁	Sandstone/clay contact
30	33° 53' 11"	35° 38' 29"	85	240	C ₁	
31	33° 53' 15"	35° 39' 05"	05	235	C ₁	
32	33° 53' 10"	35° 39' 07"		220	C ₁	
33	33° 53' 09"	35° 39' 33"	100	290	C ₁	
34	33° 53' 16"	35° 40' 12"		310	C ₁	Sandstone/clay contact and organic
					-	matter
35	33° 53' 13"	35° 40' 09"	05	265	C ₁	
36	33° 53' 12"	35° 40' 11")5	255	C ₁	
37	33° 53' 18"	35° 40' 51"		234	C ₁	
38	33° 53' 14"	35° 40' 53"		275	C ₁	

	Table 4	Results	of the radio	metric sur	vev in Ma	ansourieh-	Baábdatroad.
--	---------	---------	--------------	------------	-----------	------------	--------------

For the promising sites (i.e., high radioactivity values), a preliminary interpretation of data was carried out on the existing rocks defining the lithologic and structural controls.

Though the radiometric survey is a preliminary ground investigation, it exhibited anomalous readings within different rocks types. Out of 126 sites, there are 34 (27%) that are anomalous sites.

The concentration of radioactivity is found to be within the sandstone formation of the Neocomian-Barremian (C_1) where 16 anomalies exist among the 38 sites. In addition, the values of the measures of radioactivity were higher than in the carbonate rocks of the Eocene (e) and Senonian rocks (C_6).

Uranium Ore Deposits in Lebanon Shaban

Site	Coor	dinates	Gamma reading	s(Count/sec)	Geologic	Proposed element for uranium
No.	Latitude	Longitude	Background	Site	formation	deposition
1	33° 36' 40"	33° 24' 38"	60	155	C ₆	
2	33° 36' 05"	33° 24' 36"	1	140	C ₆	
3	33° 36' 09"	33° 24' 35"	60	170	C ₆	
4	33° 36' 13"	33° 25' 11"		135	C ₆	
5	33° 35' 27"	33° 24' 32"	55	135	C ₆	
6	33° 35' 31"	33° 25' 49"	1	140	C ₆	
7	33° 34' 51"	33° 25' 42"	1	130	C ₆	
8	33° 34' 49"	33° 25' 10"		195	C ₆	
9	33° 34' 21"	33° 25' 18"	· · · ·	165	C ₆	
10	33° 34' 20"	33° 25' 47"	70	235	C ₆	Anticipated phosphate deposits
11	33° 33' 36"	33° 26' 32"		180		i materparen prospinate depositis
12	33° 34' 08"	33° 26' 30"		160		
13	33° 33' 32"	33° 24' 12"		95	e	
13	33° 33' 35"	33° 24' 30"		105	e	
15	33° 33' 34"	33° 25' 10"		115	C	
15	33° 33' 01"	33° 25' 50"	40	100	C	
10	220 22' 04"	220 26 24"		85	C	
1/	220 221 251	33 20 24 22° 27' 02"		83 70	e	
18	33 32 23	33 27 02		/0	e	
19	33 32 20	33 27 01	55	115	e	
20	33° 33' 31"	33° 26' 29"		185	C_6	Anticipated phosphate deposits near
21	33° 33' 06"	33° 24' 30"		195	C_6	Torded Zone
22	33° 32' 26"	33° 24' 31"	(0)	145	C ₆	
23	33° 31' 50"	33° 25' 12"	60	110	C ₆	
24	33° 31' 46"	33° 26' 25"		100	C ₆	
25	33° 31' 10"	33° 23' 22"		95	C ₆	
26	33° 33' 11"	33° 26' 23"	60	105	C ₆	
27	33° 33' 13"	33° 25' 13"		70	C_6	
28	33° 30' 07"	33° 24' 35"		85	C_6	
29	33° 30' 08"	33° 25' 10"	65	135	C ₆	
30	33° 30' 33"	33° 25' 12"		150	C ₆	
31	33° 30' 32"	33° 25' 09"		135	C ₆	
32	33° 28' 46"	33° 23' 23"		185	C ₆	
33	33° 28' 43"	33° 22' 53"	80	275	C ₆	Existence of glauconite and clay in
					0	and anticipated phosphates
34	33° 28' 41"	33° 22' 11"		155	C ₆	
35	33° 28' 40"	33° 22' 13"	1	160	C ₆	
36	33° 28' 53"	33° 23' 22"		285	C ₆	Channel deposits as a trap in
			80		- 0	phosphate deposits
37	33° 28' 51"	33° 23' 23"	1	200	Ce	
38	33° 28' 08"	33° 24' 04"	· · · ·	205		
39	33° 28' 55"	33° 21' 35"	45	12.0	e e	
40	33° 28' 11"	33° 22' 10"		110	e	
41	33° 28' 12"	33° 22' 21"	1	105	e	
41	33° 26' 26''	33° 21' 37"		105	C C	
42	22° 26' 27"	22° 21' 24"	55	123	C_6	Antiginated phosphate deposite with
43	220 26 25	220 21 22"		1/0	C_6	fissure system
44	22° 26' 24"	22° 22' 10"	4	100	C_6	
43	220 251 11"	<u> </u>		130	C_6	Antioinstad nhambata damaa't
46	33° 25' 11"	33° 21' 00"	60	185	C_6	Anticipated phosphate deposits
4/	33° 25' 08''	<u>33° 22' 03''</u>	00	150	C_6	
48	<u>33° 24' 39"</u>	<u>33° 21' 34''</u>		165	C ₆	
49	33° 25' 49"	33° 27' 33"	55	155	C ₆	
50	33° 25' 51"	33° 28' 42"		140	C ₆	
51	33° 21' 35"	33° 25' 50"		185	C ₆	
52	33° 21' 39"	33° 26' 25"	70	245	C ₆	Existence of glauconite and
53	33° 21' 34"	33° 27' 01"]	230	C ₆	anticipated phosphates
54	33° 21' 33"	33° 27' 39"		170	C ₆	

Table 5. Results of the ra	diometric survey	/ in Saida- Z	Zahran and Na	abatieh area (South Lebanon)

Figure 3. Graphic presentation of the radiometric survey in Chekka area showing the anomalous radioactive sites.

Figure 4. Graphic presentation of the radiometric survey in Mansourieh-Baábdat road, showing the anomalous radioactive sites.

Figure 5. Graphic presentation of the radiometric survey in Saida-Zahrani and Nabatieh, showing the anomalous radioactive sites.

Journal of Environmental Hydrology

There is a continues concentration of radioactivity within the sandstone rocks over the measured traverse. High values of radioactivity were recorded in the carbonate rocks. The concentration of radioactivity is dominant in sandstone and restricted to specific sites of the marly rocks.

From the interpretation of the data, it was clear that the role of the reducing environment is effective in concentrating radioactivity. Higher values often occur where clay, shale, organic matter, and lignite.

To conclude, there is a significant radioactivity in all prospect areas. This clearly coincides with the type of rock formation and favorable conditions for uranium ore deposition, thus suggesting the existence of uranium minerals in these rocks. A detailed study is highly recommended to include a large geographic area of Lebanon.

Our study recommendations are as follows:

1. A grid radiometric survey is preferable, since a traverse survey may miss optimized sites.

2. Application of radiometric survey among the basaltic rocks is highly recommended, notably where dykes and veins exist.

3. Optical and petrographic analysis for phosphate deposits should be carried out to confirm the geologic relation of Lebanon to the Mediterranean phosphate belt.

4. gamma-ray spectrometer analysis or X-ray diffraction must be undertaken to identify and confirm the type of the radioactive anomalies.

5. Deep (excavated) sites for radioactive surveys must be included, since overburden rocks can hide radioactivity.

ACKNOWLEDGMENT

The author would like to acknowledge Dr. Mouin Hamze (Secretary General of the Lebanese National Council for Scientific Research) for his concern in completion of this work. Thanks are also extended to Dr. Fathi Zereini (Institut für Mineralogie der J. W. Goethe-Universität Frankfurt) and Dr. Khaled Hangari (Libyan Atomic Commission) for their valuable help in achieving this study.

REFERENCES

- Abed, A. 1981. Uranium ore deposits in the Jordanian phosphates. The 4th Arab Mineral Conference. Amman, 25-26 April, 1981. 1-25p.
- Adler, H. 1974. Concepts of uranium ore formation in reducing environment in sandstone and other related sediments. Review Paper on the formation of Uranium Ore Deposits introduced in the Symposium of Atomic Energy Commission. 141-167p.

Berry, W. 1985. Recovery of uranium from a mixture of western uranium ore and phosphate rock. Available on: http://www.freepatentsonline.com/4545962.html

- Beydoun, Z., 1976. The Levantine countries: The geology of Syria and Lebanon (Maritime regions). The Ocean Basins and Margins, 4, Plenum Co., N.Y., 319-353.
- Beydoun, Z. 1988. The Middle East: Regional Geology and Petroleum Resources. CAL, 1982. Atlas Climatique du Liban, Tome II. Service Météorologique, Ministère des Travaux Publics et Transports.

Dubertret, L. 1953. Carte géologique de la Syrie et du Liban au 1/50000me. 21 feuilles avec notices explicatrices.

Ministère des Travaux Publics. L'imprimerie Catholique, Beyrouth.

- Dubertret, L., 1955. Carte géologique de la Syrie et du Liban au 1/200000me. 21 feuilles avec notices explicatrices. Ministère des Travaux Publics. L'imprimerie Catholique, Beyrouth, 74p.
- Ellezian, H. 1980. Phosphate Deposits. Technical Report. Geology Department. American University of Beirut, 15pp.
- Erdem, E., V. Yilmaz, A. Uyanik, and H. Olmez. 1995. Distribution of uranium in the production of triple superphosphate fertilizer and phosphoric acid. Nutrient Cycling in Agro-ecosystems. 44(2)1, 129-131p.
- Hangari, K. 1983. Uranium prospecting in Libya. The Arab Symposium on the: Alternative and Renewable Energy in the Arab World. Tripoli, 22-24 January, 1983.

Shaban, A. 1991. A review on: Phosphate Deposits. Publications of the American University of Beirut. 56p.

Yezbek, J. 1990. Nutrients input and cycles on the coast of Jouneih bay. Unpublished MSc. Thesis, American University of Beirut. Biology Department.

ADDRESS FOR CORRESPONDENCE Amin Shaban National Council for Scientific Research Beirut, Lebanon

Email:geoamin@gmail.com