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For 418 hydrological stations, the time series of maximal, minimal and mean annual runoff
were built and analyzed to establish a more suitable theoretical probability density function
(PDF) or cumulative density function (CDF) to describe the annual runoff in Colombia. For
each time series the empirical CDF was compared to normal, lognormal, Gamma and Weibull
theoretical CDFs. The Kolmogorov, Smirnov and Pearson criteria were used to test the
goodness of fit at a significance level α=0.10. Our results show that the Gamma CDF is the
best model to describe maximal, minimal and mean surface runoff. This work is preliminary
research that establishes the baseline for building hydrological and climate change scenarios
in a probabilistic manner. Further research will concentrate on how probabilistic runoff
patterns will evolve under climate change conditions.

Efraín Domínguez1,2

Alexander Hassidoff1,2

Juan León3

Yulia Ivanova4

Hebert Rivera5

1Pontificia Universidad Javeriana, Bogotá, Colombia
2CeiBA-Complejidad, Bogotá, Colombia
3Universidad Nacional, Palmira, Colombia
4Universidad Central, Bogotá, Colombia
5Universidad Libre, Bogotá, Colombia

MAXIMAL,  MINIMAL  AND  MEAN  SURFACE  RUNOFF  IN
COLOMBIA:  HOW  IS  IT  DISTRIBUTED?



Journal of Environmental Hydrology                                    Volume 17  Paper 17  July 20092

Surface Runoff Statistics, Colombia    Domínguez, Hassidoff, León, Ivanova, and Rivera

INTRODUCTION

Understanding surface runoff is crucial from several points of view. First, water is a vital
resource for men and all ecosystems, and, therefore, measures are to be taken to guarantee its
appropriate distribution. Second, surface runoff that is out of control can be a big threat for
settlements neighboring rivers. Third, water has a number of uses in society, from agriculture to
electric power generation. All these aspects make understanding the behavior of surface runoff of
vital interest for governments and industry.

Surface runoff is a complex phenomenon involving rainfall, its timing, surface characteristics,
subsurface runoff, and atmospheric processes, including evapotranspiration and others. Surface
runoff properties can be usefully characterized by means of statistics.

A statistical approach to the study of surface runoff requires a series of historical data that is
as long as possible from which the behavior of hydrological variables such as extreme flows values
can be explored using statistical methods (Haan, 2002; Rozhdenstvenskiy and Chevotariov, 1974).

This paper studies the hydrological regime of surface runoff in Colombia by means of
probability functions. Three surface runoff variables were studied: minimum, average and maximum
annual flows. The results will be used as the baseline (initial conditions) for the stochastic
modeling of hydrological scenarios under climate change conditions through the Fokker – Planck
– Kolmogorov equation (Domínguez, 2007; Kovalenko et al., 2005).

METHODS AND DATASETS

Datasets

Data from 418 flow monitoring stations distributed in 9 main hydrological regions of the
country were provided by the IDEAM, the organization responsible for hydrologic measurements
in Colombia. These data consisted of daily average flow series for an interval of about 30 years,
from 1970 to 2000. It has to be noted that not all the stations have the same monitoring interval;
1970 to 2000 is the most common, but some stations have shorter intervals with 1984 to 1998
being the shortest. It is also important to note that the series directly resulting from the monitoring
process included, as is usual in hydrological measurements, blank intervals where no data where
recorded. To fill these blank intervals, the IDEAM used the methods suggested by Martínez (2001)
and Martínez and Ruíz (1998). The geographic distribution of the stations was so that the data
represents the different climatic regions of the country (see Table 1).

Method (defining runoff probabilistic patterns)

• Runoff: a Random Variable

Extreme hydrological events such as maximum and minimum flows, as well as long term
average flow values - annual average flow for instance - can be treated as random variables. In fact,
in hydrology, there is a long tradition using the methods of the theory of probability when assessing

CLIMATE REGION NUMBER OF STATIONS 
Tropical Rain Forest Medio Magdalena, Pacífico, Catatumbo 112 
Tropical Dry Forest Medio Cauca, Caribe 74 
Tropical Savanna Llanos 88 
Humid Tropical  Mountain Forest Alto Cauca, Alto Magdalena 79 
Unclassified Climates  * 65 
 

Table 1.  Distributions of stations by geographic zones.
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water resources (Lvovitch, 1970; WMO, 1994) or supporting hydraulic design in civil engineering
(Foster, 1923; Fujita and Kudo, 1995; Haan, 1977; Klemes, 1995a; Klemes, 1995b;
Rozhdenstvenskiy and Chevotariov, 1974).

• Typifying a catchment runoff by means of cumulative density functions for maximum,
mean and minimum flows

To describe the behavior of a variable it is useful to assess measures of its central tendency as
well as measures of its dispersion. For this, a number of parameters are evaluated from a sample
of data: the mean, the median and the mode for describing the central tendency, and the standard
deviation or the variance for describing the dispersion. A second step would be to study the
moments of the sample – skewness and kurtosis essentially - in order to typify the shape of the data
distribution. The next step to characterize the data distribution is to construct its frequency
distribution, dividing its range into class intervals and counting the number of occurrences that fall
in each class. The set of parameters that can be obtained following this method - parameters that
partially describe the characteristics of the variable - are useful for making decisions related to the
variable. For example, the mean flow assessed from historical data of a river is valuable
information for a water management authority interested in solving water supply problems of a
village as it gives an idea of the amount of flow that could be expected to be used in the future. In
the same manner, the standard deviation reveals information about the dispersion of the flows that
can be expected and, therefore, it gives an indication of the size required for storage of water during
times of drought and allows assessment of hydrological risk. However, this procedure leads to a
partial description of the behavior of the variable. For a more precise and useful description of the
variable, probability density functions (PDFs) or cumulative density functions (CDFs) are used.
Experience has demonstrated that, fortunately, there is no need to construct a function for each set
of data. Instead of this, it is better to fit existing well known theoretical functions to the data.
Briefly, the procedure consists of taking a number of these well known functions and fitting each
one of them to the data. The fitting process consists of searching for the combination of parameters
of the function that make it best represent or fit the data (Haan, 2002 ; Rozhdenstvenskiy and
Chevotariov, 1974). Two main methods can be applied: the method of the maximum verisimilitude
and the method of the moments. A third method would be to perform an optimization process
where a measure of the difference between the theoretical function and the data is to be minimized;
in this case it is very useful to begin the optimization process by using the set of parameters that
can be obtained by one of the two methods cited above. This last optimization method has been used
in this work. A more detailed explanation of the method can be found in Akai (1994) and Zwillinger
(1997). Once the functions are fitted, the goodness of fit of each one of them is tested in order
to identify the best one.

• Probability functions used

Four probability functions were used:

a) Normal distribution

A random variable X is said to have a normal distribution with mean µ  and variance σ  if it has
the density function:

[ ]2/)()2/1(
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−−= xexf ∞<<∞− x            (1)



Journal of Environmental Hydrology                                    Volume 17  Paper 17  July 20094

Surface Runoff Statistics, Colombia    Domínguez, Hassidoff, León, Ivanova, and Rivera

As the central limit theorem states that the sum of n independent random variables is
approximately normally distributed, this distribution is particularly useful when working with
variables resulting from the sum of others such as the average annual flow.

b) Lognormal Distribution
A random variable X is said to have a lognormal distribution if its logarithm follows the normal

distribution. Calling Y the logarithm of X we have Y = ln X and Y is normally distributed with mean
µY and standard deviation σY; the density function of X is:
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The mean of a random variable that has a lognormal distribution is 
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σσµσ . This distribution presents two advantages in relation to
the normal distribution. First, it has positive constrained values; second, it does not have a
symmetrical shape. Both of these characteristics are closer to the features of the majority of
hydrological variables.

c) Gamma Distribution

A random variable X is said to have a gamma distribution if it has the density function:
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Here: Γ(n) is the gamma function, defined as ( ) ∫
∞ −−=Γ
0

1 dxexn xn .

The parameters of this function are λ, which is called the shape parameter, and r, called the scale
parameter. The mean of a random variable that has a gamma distribution is λ/)( rXE =  and its

variance is 2/)( λrXV = . This distribution works particularly well for variables related to Poisson
processes. Extreme hydrological phenomena such as minimum or maximum flows can be seen as
Poisson processes as they occur instantly and are independent from other extreme phenomena
(Montgomery and Runger, 2003).

d) Weibull Distribution

A random variable X is said to have a Weibull distribution if it has the density function:
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The parameters of this distribution are γ, the location parameter, δ, the scale parameter
(positive) and β, the shape parameter (positive). The mean of a Weibull distributed random variable
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is ( )βδγ /11)( +Γ+=XE  and the variance is [ ]{ }22 )/11()/21()( ββδ +Γ−+Γ=XV .  In this particular
work a simplified version of the Weibull distribution with the location parameter value equal to
zero (γ = 0) has been used as this is the one provided by MS Excel, which is the program that has
been used for all the statistical calculations. The Weibull distribution is an extreme value
distribution and works very well for variables representing extreme hydrological phenomena such
as maximum and minimum flows. As it has three parameters, it is generally easy to make it fit well
to the data. It has been widely used for maximum flow analysis (Montgomery and Runger, 2003).

• Fitting process (algorithm, optimization method)

The first task to accomplish was to create the maximum, average and minimum annual flow
series from the available series of daily average flows, for each flow monitoring station.

The maximum annual flows series and the average annual flow series were relatively easy to
construct: for the first one the maximum flow value for each year of data was extracted from the
original series, for the second one, the mean of the daily flow values was assessed for each year
of the data. The construction of minimum annual flows series required a little longer procedure
as local monitoring experience has showed that flow measurements during dry events are not as
reliable as during average conditions or extremely high flow events. Minimum annual flow values
were calculated by assessing the mean of runoff values that are exceeded 90 % of time within each
year. The maximum, average and minimum annual flow series were arranged in a descending order
and the probability for each value to be exceeded was assessed by the Weibull equation:

1
)(

+
=≥

n
mxXP m            (5)

where m is the position of the value for which probability to be exceeded is to be assessed and n
is the total number of values in the series. Using Equation (5) we built the empiric cumulative
frequency histogram of the random variable (maximum, minimum or mean annual runoff), the
pattern to which the theoretic probability density functions are to be fitted.

The fitting process included two steps. First, the method of moments was used to find a set of
parameters of the function that guarantee that its moments are equal to the moments of the sample.
Secondly, the conjugate gradient method was implemented by means of the Excel Solver tool in
order to optimize the set of parameters for each promoted theoretic CDF; the optimizing criterion
was to reduce to a minimum the mean of the differences of the values of the theoretic function from
the corresponding empirical values. To accomplish the first step, the following relations between
the parameters of each function and the moments of the sample were used (Table 2, Montgomery
and Runger, 2003).

For the Weibull distribution there are no explicit expressions relating the parameters and the
moments, therefore, an arbitrary first set of parameters was defined to begin the optimizing
process.

Goodness of Fit

In order to assess the goodness of fit between each proposed theoretic distribution and the
empirical one, three non parametric tests were performed for each flow monitoring station. The
tests that were performed are the Kolmogorov test, the Pearson (Chi-Square) test and the Omega
Square test (or Cramer von Mises test). It should be noted that Kolmogorov test is oriented to
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measure the biggest difference between individual data pairs while the Chi-Square and the Omega-
Square tests are oriented to measure the difference between the sums of all the individual
differences between data pairs. This choice of the tests to perform was made so that a wider view
and understanding of the fitting process could be obtained. For all three tests a level of significance
of 0.10 was used. The level of significance is the probability related to the risk of rejecting the
hypothesis when it should be accepted.

Kolmogorov test

The Kolmogorov test compares observed and expected frequencies by means of the statistic

nDn  where n is the number of data pairs and Dn is given by:

( ) ( )xFxFD n
x

n −= sup            (6)

The statistic Dn follows the Kolmogorov distribution, which corresponding cumulative
distribution function is:
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The procedure of the test consists of defining a level of significance and its corresponding K2

value. This value will be called the critical value and denoted by K0.05
2 if a level of significance of

0.05 is being used or by K0.10
2 for a level of significance of 0.10. When nDn  is larger than the

critical value the hypothesis that the flow values follow the theoretical distribution will be
rejected, otherwise it will be accepted.

Pearson Test (Chi-Square)

The Chi-Square test compares observed and expected frequencies of a distribution by means of
the statistic χ0

2 given by:
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where k is the number of intervals in the frequency histograms.

It should be noted that χ0
2 is positive. Small values of χ0

2 denote good agreement between the
empirical and the theoretical distribution, large values of χ0

2 denote discrepancy between the
distributions. The statistic χ0

2 approximately follows the chi square distribution with k-p-1
degrees of freedom, where p represents the number of parameters of the theoretical distribution

Distribution Relation between parameters and moments 

Normal x=µ , xS=σ  

Log Normal yy =µ , yy S=σ  

Gamma 
2
xS

x=λ , 2

2

xS
xr =  

 

Table 2.  Relationship between PDF parameters and time series statistical moments.
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estimated by sample statistics. In such a condition, the procedure of the test consists of defining
a level of significance and its corresponding χ0

2 value. This value will be called the critical value
and is denoted by χ0.05

2 if a level of significance of 0.05 is being used or by χ0.10
2 for a level of

significance of 0.10. When χ0
2 is larger than the critical value the hypothesis that the flow values

follow the theoretical distribution will be rejected, otherwise it will be accepted

It is also important to note that by using the procedure explained above the boundaries that have
been chosen for the cells are such that the expected frequencies are equal for all the cells.

Omega-Square Test (Cramer Von Mises Test)

The Omega-Square test compares observed and expected frequencies by means of the statistic
T given by:
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           (9)

Once a level of significance is defined and a critical value of T can be defined by using the
Cramer von Mises table, then, if T is larger than the critical value the hypothesis that the flow values
follow the theoretical distribution will be rejected, otherwise it will be accepted.

RESULTS

Results for maximum annual flows appear in Table 3. For a total of 420 stations, as it can be seen
that the hypothesis that the maximum annual flow follows a gamma distribution was the best. In fact,
the gamma distributions obtained the highest acceptance percentages for the three tests performed:
79.8, 93.1 and 96.4 % for Kolmogorov, Chi Square and Omega Square tests respectively. The
second best fitting results were obtained by the lognormal distribution for the Kolmogorov test
(75.5 % of acceptance); for the Chi Square and the Omega Square test the second best fitting
distribution was the Weibull distribution (91.2 and 90.5 % respectively). The Normal distribution
fitted the worst for all three tests (63.8, 82.1 and 85.2 % for Kolmogorov, Chi Square and Omega
Square respectively). The analysis of the Mean Absolute Relative error (MARE) of fit showed the
minimum MARE for the gamma distributions to be 11.8% with a standard deviation of 4.7%.  For
the normal, lognormal and Weibull distributions the MARE was 13.4, 14.9% with standard
deviations of 5.0, 13.1 and 4.1% respectively.

Results for minimum annual flows are shown in Table 4 for a total of 423 stations. The best
results were the for the Gamma and Weibull distributions. For the Kolmogorov and Omega tests
the Gamma distribution obtained the best results (73.0 and
86.8 % of the test were accepted respectively) while the Weibull distribution was second (57.9
and 78 % of the tests were accepted respectively). For the Chi Square test the Weibull distribution
the one that obtained the best results (80.9 of the tests were accepted) while the Gamma
distribution was second (76.8 of the tests were accepted). For all three tests the normal
distribution was third best according to the number of accepted tests while the lognormal
distribution gave the worst fit. For the minimum annual discharges the Gamma distributions
showed the minimum MARE of fit with an average value of 11.9% with a standard deviation of
4.1%.  In this case the normal, lognormal and Weibull distributions have shown average values for
the MARE of fit of 14.0, 24.4 and 13.0% with standard deviations of 5.4, 31.1, and 5.7%
respectively.
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Table 3.  Results of the tests for maximum annual flows performed on 420 stations.

Table 4.  Results of the tests for minimum annual flows performed on 423 stations.

Test KOLMOGOROV 
Distribution Gamma Normal LogN  Weibull 

Number of tests where hypothesis was accepted 335 268 317 282 
% 79.8 63.8 75.5 67.1 
Classification of the fitting according to the 
percentage of acceptance 1 4 2 3 

Test CHI SQUARE 
Distribution Gamma Normal LogN  Weibull 

Number of tests where hypothesis was accepted 391 345 370 383 
% 93.1 82.1 88.1 91.2 
Classification of the fitting according to the 
percentage of acceptance 1 4 3 2 

Test OMEGA SQUARE 
Distribution Gamma Normal LogN  Weibull 

Number of tests where hypothesis was accepted 405 358 372 380 
% 96.4 85.2 88.6 90.5 
Classification of the fitting according to the 
percentage of acceptance 1 4 3 2 

 

Test KOLMOGOROV 
Distribution Gamma Normal LogN Weibull 

Number of tests where hypothesis was accepted 309 223 230 245 
% 73.0 52.7 54.4 57.9 
Classification of the fitting according to the 
percentage of acceptance 1 3 4 2 

Test CHI SQUARE 
Distribution Gamma Normal LogN 

N l
Weibull 

Number of tests where hypothesis was accepted 325 315 280 342 
% 76.8 74.5 66.2 80.9 
Classification of the fitting according to the 
percentage of acceptance 2 3 4 1 

Test OMEGA SQUARE 
Distribution Gamma Normal LogN Weibull 

Number of tests where hypothesis was accepted 367 320 279 330 
% 86.8 75.7 66.0 78.0 
Classification of the fitting according to the 
percentage of acceptance 1 3 4 2 

Results for average annual flows for a total of 433 stations are shown in Table 5. The hypothesis
that the maximum annual flow follows a gamma distribution was the most accepted. In fact, the
gamma distributions obtained the highest acceptance percentages for two of the three tests
performed: 84.4, 85.0 and 91.2 % for Kolmogorov, Chi Square and Omega Square tests
respectively. The second best fitting results were obtained by the lognormal distribution with  87.8,
79,7 and 86.8 % of acceptance for the Chi Square, Kolmogorov and  Omega Square tests
respectively. The worst fit results were for the Weibull distribution with 69.7, 85.7 and 88.2 % of
acceptance for Chi Square, Kolmogorov and Omega Square tests respectively. The MARE of fit
for the mean annual discharges showed 11.1, 12.0, 12.4 and 12.4% average values with standard
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deviations of 4.1, 5.4, 31.1 and 5.7% for Gamma, normal, lognormal and Weibull distributions
respectively.

Analysis by regions

As can be seen in the following tables (Tables 6, 7 and 8), results are quite uniform
geographically with respect to the best fit distribution. In the majority of regions the best fit results
were obtained for the Gamma distribution. In spite of this it has to be noted that uniformity of
results for Kolmogorov and Omega Square tests was stronger than for the Chi Square Test. For the
latter, best fitting results were obtained for the lognormal in two regions (Medio Cauca and Caribe)
and for the Weibull distribution in two other regions (Otras and Pacífico).

CONCLUSIONS

It is recommended that the Gamma distribution be used to characterize the hydrological regime
of runoff in Colombian catchments. It is valid for series of maximal, minimal and mean annual
runoff. For all types of discharges (maximal, minimal and mean annual runoff) the Kolmogorov
test showed a higher rejection of the null hypothesis for the lognormal, normal and Weibull
distributions. The Chi Square and Omega Square tests have shown similar levels of rejection for
all theoretic PDFs instead. Nevertheless, the MARE of fit assessment showed lower average
values and standard deviations for the fit with Gamma distributions. The lognormal theoretic
distribution has poorer results in this sense, having high average values and standard deviation for
the MARE of fit.

The Gamma theoretic distribution constitutes a subfamily of CDF that belongs to Pearson III
family type (Rozhdenstvenskiy and Chevotariov, 1974). At the same time a series of work has
proposed the use of the Fokker – Planck – Kolmogorov equation as an approach to build
hydrological scenarios under non-stationary conditions (Dolgonosov and Korchagin, 2007;

Table 5.  Results of the tests for average annual flows performed on 433 stations.

Test KOLMOGOROV 

Distribution Gamma Normal Log N Weibull 
Number of tests where hypothesis was accepted 361 321 345 302 
% 84.4 74.1 79.7 69.7 
Classification of the fitting according to the percentage 
of acceptance 1 3 2 4 

Test CHI SQUARE 
Distribution Gamma Normal LogN  Weibull 

Number of tests where hypothesis was accepted 368 371 380 371 
% 85.0 85.7 87.8 85.7 
Classification of the fitting according to the percentage 
of acceptance 

4 2 1 3 

Test OMEGA SQUARE 
Distribution Gamma Normal LogN  Weibull 

Number of tests where hypothesis was accepted 395 385 376 382 
% 91.2 88.9 86.8 88.2 
Classification of the fitting according to the percentage 
of acceptance 1 2 4 3 
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Domínguez, 2004a; Domínguez, 2004b; Domínguez, 2007; Kovalenko et al., 2005). It can be
noted that the Pearson III family of CDF type is a particular solution of the Fokker – Planck –
Kolmogorov equation and the use of the Gamma distribution as the starting point is recommended
for stochastic models intended to predict behavior of variables such as maximum, mean and
minimum annual flow under climate change conditions. Finally, any regionalization of probabilistic

Table 6.  Maximum Annual Flow - Results by Regions.

Table 7.  Minimum Annual Flow - Results by Regions.

 KOLMOGOROV TEST CHI SQUARE TEST OMEGA SQUARE TEST 
Theoretic Distribution 
type Gamma Normal 

Log 
Normal Weibull TOTAL Gamma Normal 

Log 
Normal Weibull TOTAL Gamma Normal 

Log 
Normal Weibull TOTAL 

% of accepted hypothesis 79,8 63,8 75,5 67,1 100,0 93,1 82,1 88,1 91,2 100,0 96,4 85,2 88,6 90,5 100,0 
Classification of the fitting 1 4 2 3   1 4 3 2   1 4 3 2   
 MEDIO CAUCA 
% of accepted hypothesis 86,2 69,0 86,2 69,0 100,0 93,1 82,8 100,0 86,2 100,0 100,0 96,6 100,0 96,6 100,0 
Classification of the fitting 1 2 1 2   2 4 1 3   1 2 1 2   
 MEDIO MAGDALENA 
% of accepted hypothesis 77,8 63,0 74,1 61,1 100,0 92,6 79,6 75,9 92,6 100,0 100,0 81,5 77,8 92,6 100,0 
Classification of the fitting 1 3 2 4   1 2 3 1   1 3 4 2   
 OTRAS 
% of accepted hypothesis 81,5 78,5 73,8 73,8 100,0 87,7 87,7 84,6 90,8 100,0 92,3 90,8 86,2 90,8 100,0 
Classification of the fitting 1 2 3 3   2 2 3 1   1 2 3 2   
 PACÍFICO 
% of accepted hypothesis 84,2 68,4 73,7 60,5 100,0 92,1 86,8 73,7 94,7 100,0 89,5 81,6 73,7 86,8 100,0 
Classification of the fitting 1 3 2 4   2 3 4 1   1 3 4 2   
 ALTO CAUCA 
% of accepted hypothesis 80,0 60,0 84,0 60,0 100,0 96,0 76,0 96,0 96,0 100,0 100,0 92,0 100,0 84,0 100,0 
Classification of the fitting 2 3 1 3   1 2 1 1   1 2 1 3   
 ALTO MAGDALENA 
% of accepted hypothesis 74,1 35,2 72,2 59,3 100,0 96,3 63,0 87,0 88,9 100,0 98,1 63,0 87,0 83,3 100,0 

Classification of the fitting 1 4 2 3   1 4 3 2   1 4 2 3   
 CARIBE 
% of accepted hypothesis 79,2 62,5 75,0 75,0 100,0 91,7 81,3 97,9 87,5 100,0 97,9 89,6 95,8 91,7 100,0 

Classification of the fitting 1 3 2 2   2 4 1 3   1 4 2 3   
 CATATUMBO 
% of accepted hypothesis 89,5 63,2 68,4 89,5 100,0 89,5 73,7 78,9 89,5 100,0 100,0 89,5 78,9 94,7 100,0 
Classification of the fitting 1 3 2 1   1 3 2 1   1 3 4 2   
 LLANOS 
% of accepted hypothesis 77,3 69,3 76,1 65,9 100,0 96,6 93,2 95,5 93,2 100,0 95,5 89,8 95,5 93,2 100,0 
Classification of the fitting 1 4 2 3   1 3 2 3   1 3 1 2   

 

 KOLMOGOROV TEST CHI SQUARE TEST OMEGA SQUARE TEST 

 Normal 
Log 

Normal Gamma Weibull TOTAL Normal 
Log 

Normal Gamma Weibull TOTAL Normal 
Log 

Normal Gamma Weibull TOTAL 
% 52,7 54,4 73,0 57,9 100,0 74,5 66,2 76,8 80,9 100,0 75,7 66,0 86,8 78,0 100,0 
Classification of the fitting 3 4 1 2   3 4 2 1   3 4 1 2   

  MEDIO CAUCA 
% 48,3 86,2 82,8 62,1 100,0 79,3 100,0 86,2 93,1 100,0 75,9 96,6 100,0 79,3 100,0 
Classification of the fitting 4 1 2 3   4 1 3 2   4 2 1 3   

  MEDIO MAGDALENA 
% 55,6 50,0 79,6 61,1 100,0 88,9 63,0 88,9 94,4 100,0 87,0 59,3 96,3 87,0 100,0 
Classification of the fitting 3 4 1 2   2 3 2 1   2 3 1 2   

  OTRAS 
% 62,1 74,2 81,8 60,6 100,0 89,4 86,4 92,4 89,4 100,0 83,3 86,4 92,4 86,4 100,0 
Classification of the fitting 3 2 1 4   2 3 1 2   3 2 1 2   

  PACÍFICO 
% 61,0 58,5 75,6 58,5 100,0 82,9 73,2 82,9 90,2 100,0 82,9 73,2 95,1 87,8 100,0 
Classification of the fitting 2 3 1 3   2 3 2 1   3 4 1 2   

  ALTO CAUCA 
% 64,0 52,0 80,0 68,0 100,0 72,0 84,0 92,0 88,0 100,0 88,0 76,0 96,0 80,0 100,0 
Classification of the fitting 3 4 1 2   4 2 1 3   2 4 1 3   

  ALTO MAGDALENA 
% 64,8 55,6 79,6 70,4 100,0 87,0 70,4 77,8 85,2 100,0 94,4 68,5 98,1 96,3 100,0 
Classification of the fitting 3 4 1 2   1 4 3 2   3 4 1 2   

  CARIBE 
% 52,1 54,2 83,3 62,5 100,0 75,0 60,4 93,8 93,8 100,0 72,9 62,5 95,8 83,3 100,0 
Classification of the fitting 4 3 1 2   2 3 1 1   3 4 1 2   

  CATATUMBO 
% 78,9 57,9 89,5 78,9 100,0 73,7 57,9 57,9 73,7 100,0 94,7 68,4 100,0 84,2 100,0 
Classification of the fitting 2 3 1 2   1 2 2 1   2 4 1 3   

  LLANOS 
% 25,3 28,7 42,5 34,5 100,0 41,4 35,6 41,4 47,1 100,0 41,4 37,9 50,6 44,8 100,0 
Classification of the fitting 4 3 1 2   2 3 2 1   3 4 1 2   
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characteristics of Colombian runoff must to consider the use of the Gamma distribution as the base
model for estimations in un-gauged basins.
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