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A solution is proposed to the problem of finding the best monitoring network design for the
detection of groundwater contamination from multiple areal sources with different leakage
probabilities and amounts leaked. In large industrial plants or industrial areas the probability
of occurrence, and the amount of contaminant released in a leak varies from place to place,
which, in turn, makes the contamination plume spatial distribution stochastic. One way to
model this randomness is by simulating the sources as random (models the cause); others
include the Monte Carlo simulations of permeability and/or dispersivity fields (models the
effect). In the method proposed here flow and transport modeling are coupled with the random
simulation of the sources, followed by measuring the accuracy and precision of several
candidate monitoring network designs by way of a specific objective function. As the selection
of the locations is a very difficult combinatorial problem, a simulated annealing algorithm is
proposed for the optimization. The method was applied to a hypothetical case study consisting
of an unconfined porous aquifer with risk of contamination from an industrial area. Results
show that the method proposed is highly preferable to stratified and clustered monitoring.
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INTRODUCTION

Groundwater pollutants may originate from point or non-point sources. A point source is
characterized by having identifiable, small to very small scale sources. Non-point sources are
usually associated with diffuse/spread contamination, eventually originated from many small-
scale sources. Most common point-sources for groundwater are leaking underground storage
tanks (USTs), septic systems, landfills and hazardous wastes sites. Most common non-point
sources include agriculture, road runoff, and leaks or spills of industrial chemicals at industrial
sites. In the United States, between 1988 and 2006, 464,728 releases from leaking USTs were
confirmed (data available in the MRP*Info database: USEPA (2006)). The yearly frequency of a
leak given an accident at an industrial site in the USA, for the 1994-1999 period, with data from
Belke (2000), was calculated as 0.1119, as opposed to a value of 0.3182 for UST leakage
frequency. Using the same data on can calculate, using Bayes theory, the probability of having an
accident in the origin of a leak, equal to 0.0820, and the probability of detecting a leak if no accident
has occurred, which amounts to 0.02987. Note here that the probability of having a leak in a UST
(@ 32%) is much higher than that reported for industrial releases (@ 11%), indicating that USTs
alone are very important contamination sources. In the European Union, as far as it was possible
to investigate, there is no global quantification of UST releases, however, the estimated number
of contaminated sites exceeds 1.5 million as this number is from only 11 of 25 member states
(EEA, 1999). USTs are not, however, the only sources in industrial areas. Accidental spills are also
common, e.g., when transferring chemicals between tanks. Chemical releases may also be due to
ruptures in piping systems, and in welding points. Pipe rupture leakage frequency or rupture
frequency may be determined by the well-known “Thomas methodology” (Thomas, 1981), if no
historical data or specific maintenance records are available. It must be used with care as it may
not have sufficient discriminating power about piping reliability (Lydell, 2000). The Thomas
approach is only an alternative method whenever historical information is not available; otherwise
probabilistic analysis of accidents and incidents kept in databases is advised. Examples of such
databases include MHIDAS (Major Hazard Incident Data Service), developed by the Safety and
Reliability Directorate of the United Kingdom Atomic Energy Authority, the FACT (Failure and
Accident Technical Information System) operated by the TNO (Organization for Applied and
Scientific Research) in Holland; and the RMP*Info (Risk Management Plans Database) operated
by the United States Environmental Protection Agency. Once a contaminant enters groundwater
it will spread and interact with the soil matrix. Spreading is mainly in the direction of groundwater
flow, with spreading velocities that may be faster, equal or slower (i.e., “retarded” - used here in
the same sense as in Zheng (1990)) than that of the groundwater itself. In the first case are light
non-aqueous phase liquids that in some particular conditions may spread on the top of the
groundwater table faster than the water itself, and eventually in different directions (Mercer and
Cohen, 1990); Newell et al., 1995)). Retarded contaminants interact with the soil matrix, by
sorption and strong chemical bonds. All cations and many organic molecules undergo retardation
in soil, with the strength of the sorption dependent on the chemical characteristics of the
contaminant and on the amount of available sorption “sites” (depending on the amount and type of
clay, organic matter, metal oxides and hydroxides). Accurate prediction of contaminant spreading
is fundamental to the correct allocation of monitoring devices and design of treatment techniques.
Quantitative prediction of contaminant spreading is only possible if one understands the processes
controlling advection, dispersion and reaction (physical, chemical, biological) and affecting
concentrations. These processes may be incorporated in models, thus helping to model complex
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time and space processes. Uncertainty about parameters may also be incorporated in modeling,
resulting in stochastic predictions of groundwater concentrations. Uncertainty is usually related
to incomplete information about hydraulic parameters (hydraulic conductivity at the top of the
list), dispersion parameters (mostly dispersivity), reaction parameters (usually the distribution
coefficient between solute and solid phases, biological reaction constants and rates, and radioactive
decay), and source location and amounts released.

Uncertainty about receptor concentration values given some emission is a result of some
factors that may act synergistically, of which the most important are uncertainty about: i) the
permeability field; ii) the flow boundary conditions; iii) the dispersivity coefficients; iv) the initial
conditions; v) uncertainty about mass boundary conditions (amounts emitted by the source(s)).
The first three factors have been studied exhaustively for the last thirty years (see, e.g., the review
made by ASCE (2003)), though a thorough review pointing specific rules and conditions of
application is still missing. The latter two factors have been the subject of a broad set of methods
included under the designation of “chemical fingerprinting”. Though these methods were usually
aimed at identifying compounds responsible for contamination, using laboratory analytical
methods, they have also been important in environmental forensics to identify the contamination
sources in groundwater, namely of petroleum hydrocarbons (Zemo et al., 1995; Stout et al., 1998),
persistent organics (Erickson, 1997; Ramamoorthy and  Ramamoorthy, 1997), agriculture
contamination with specific nutrients (Widory et al., 2004), proprietary additives and other
chemicals (Atmadja and Bagtzoglou, 2001; Morrison, 2000a,b). In some instances fingerprinting
is not sufficient to attribute responsibilities beyond a reasonable doubt (Stout et al., 1998). In most
cases also releases and spill history (location and amounts spilled), chemical parent products and
historical records are necessary. Furthermore, by accurately identifying pollution sources, the
complex and lengthy process of remediation that is often initiated by finding the contamination
source can be cut down (Abt, 1999). Furthermore, contaminant source uncertainty is one of the
factors causing the problem to be ill-posed when solving contaminant transport problems, meaning
that a small perturbation in the input may result in an arbitrary large perturbation in the solution
(Sun, 1994). Perturbations in contaminant source can be caused by limitations in data quantity and
quality, and by model uncertainty, which may be non-Gaussian and systematic (Sun et al., 2006).
Common model uncertainties include parameter uncertainty and model structure uncertainty. The
former may be caused by the variability of hydrogeologic parameters manifested at different
spatial scales, whereas the latter is due to incomplete knowledge or incorrect conceptualization
of system features, events, and processes (Meyer et al., 2004).

The most common approach to include uncertainty in modeling is by stochastic modeling. Here,
hydraulic conductivity, K, is considered a random field and a large number of flow and transport
simulations are made (e.g., by Monte Carlo simulation, either conditioned on some known values,
or not) with alternative simulated K values (Kaunas and Haimes, 1985; Massmann and Freeze,
1987; Massmann and Freeze, 1987b; Small, 1997) and extracting the relevant information from
the results, such as classical statistical parameters and frequency analysis (e.g., by entropy) and
Bayesian posterior distributions, necessary to evaluate the objective functions. Meyer et al.
(1994), Storck et al. (1997) and Hudak (2005) also consider the shape and probability of release
at the source – though the releases are modeled by uniform distributions, either at the border of
the emitting area (landfill) or inside it, with no constraint as to where inside the area the release
occurs. Reinelt et al. (1988) proposed a computer-aided methodology to aid implementing a
monitoring program at the watershed level, with uncertainty about source and sinks, where human
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activities resulted in non-point contamination sources. They developed an algorithm (design) to
examine tradeoffs between cost and statistical power for the stations where detection of change
was the primary objective. One interesting result from this study is that, in the case study evaluated
- Stillaguamish river basin - it was more cost-effective to increase the number of stations than to
increase sampling frequency or number of replicates. For detection monitoring this may well be
the most frequent situation - increasing frequency or replicates at wrongly situated stations will
not result in important power increase, when compared to the gain obtained by putting a station at
a better location. Scheibe and Lettenmaier (1989) use a health risk-based methodology, where the
probability of detecting contamination at a given monitoring well depends on the probability of
having applied the contaminant in some upstream soil plots in agricultural areas. The objective was
to minimize added health risk for the selected observation monitoring wells. The method proposes
an iterative procedure of sampling-analysis-sampling, where many health risk parameters have to
be (professionally) assumed.

In the present article, instead of making the permeability field the cause for the uncertainty at
monitoring wells, the uncertain parameter is contaminant release location and amount released.
The probability of a leak and the amount of contaminant released are modeled as random functions
with known mean and standard deviation. Information regarding these two parameters may be
obtained for some industries and processes in specific databases, as mentioned earlier. Several
Monte Carlo simulations are then conducted to obtain alternative emission scenarios. Two-
dimensional flow and transport simulation is made using these scenarios, resulting in as many
alternative plume concentration distributions. An optimized monitoring network is then sought
with the highest reliability (accuracy and precision), i.e., that best quantifies i) the spatial
variability of concentrations; ii) contaminated area and volume. Optimization is made by the
simulated annealing algorithm due to the combinatorial nature of the problem of selecting a small
number of well locations from a large set of alternatives. The optimized network is then compared
to other common statistical methods: clustered and stratified. The latter were chosen as they are
the most frequently used: clustered when monitoring is concentrated near the origin due to legal
constraints (e.g., property limits and drilling permits) or empirical decision; stratified when the
latter is extended to outer limits, but more information is considered necessary near the origin.
Results show that optimization generated monitoring networks outperform these configurations.

The article is organized as follows: in the second section some methods are reviewed, namely
for i) obtaining the emission scenarios, ii) groundwater flow and solute transport, iii) objective
function formulation; iv) solving the optimization problem; the third section presents a case study;
in the fourth section the results are analyzed and compared; finally, in the last section the main
conclusions are drawn.

METHODOLOGY

Estimating leakage probability and mass flux at the source

Leakage events are more frequent in certain industrial activities and processes (sources) than
in others; likewise the amount of contaminants released also varies in space. Hence, a method for
estimating contamination events must take these two aspects into consideration. Here, the
likelihood of a leak is modeled by a leakage probability attributed to sub-areas inside the industrial
area, where specific activities or processes take place, and the amount released is modeled by
setting the confidence interval to the mean contaminant concentration, meaning that the leakage
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concentration may vary in between two pre-established values. Variability of the source was
created by a very simple algorithm intended to generate several alternative, equally probable,
leakage scenarios, in a number of, say, k. A grid was superposed over the industrial area, and each
grid cell receives its own emission parameters. The probability of a leak occurring at grid cell i is
given by pi, and the potential emission concentration (M/L3) is given by ci, such that ci is a value
in the interval [mi-δi.mi, mi+δi.mi], with mi the mean potential emission value and δi the interval
amplitude (M/L3) for some confidence level. The δi parameters could also be established by fuzzy
logic, in which case the parameter may take different values to the left and right of the central value,
or by professional judgment based on previous experiences or similar cases. To estimate effective
emission concentration, ei, a random number, ri, is drawn from an uniform distribution, and the
following simple pseudo-code is used: i) if pi > ri then πi = 1; else πi = 0; ii) randomly obtain the
potential emission concentration, ci, inside the interval [mi-δi.mi, mi+δi.mi]; iii) calculate the
effective emission by ei = ci . πi; iv) go to i) until all cells have been calculated; repeat i) to iv) k
times (see Equation (3) and accompanying text).

Estimating cell concentrations

Contaminant concentration estimates are obtained by solving the advection-dispersion differential
equations for mass transport in porous media with the appropriate state variables and initial and
boundary conditions. Considering that a two dimensional model of steady-state saturated
groundwater flow in an isotropic heterogeneous aquifer is applied on a rectangular domain of
dimension (0≤x≤Lx, 0≤y≤Ly), the equation to be solved is
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where Kxx is the hydraulic conductivity in the x direction [L/T ], Kyy is the hydraulic conductivity
in the y direction [L/T ] and h is the hydraulic head[L]. If the contaminant is assumed to be
conservative, with no interaction with the solid matrix, then the two-dimensional advection-
dispersion equation for plume migrating in a flow domain is (Bear, 1972):
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where C is the concentration of the contaminant in cell at location (x, y), vx and vy are the average
groundwater flow velocity components in the x and y direction respectively, Dxx, Dyy are the
components of the pore scale hydrodynamic dispersion vector, and t is time. Out of the many
numerical solvers for these equations, either freeware or in commercial versions, the most
appropriate ones for automatic generation of receptor concentration scenarios are those that allow
a direct access to input and output files and that may run as slaves of other programs. MODFLOW
(McDonald and Harbaugh, 1988) for flow modeling and MT3D (Zheng, 1990) for advection-
dispersion-chemical reaction modeling are examples of such codes, and were used here. In order
to obtain a representative image of the contamination phenomenon under uncertainty about the
source presented in the previous section, several estimates of concentration are needed. If one
considers the variance of the effective emission, e, represented here as se

2, a threshold value d,
representing the error one is willing to accept when estimating the mean value of e, for a two-sided
confidence level, α, Equation (3) may help determine the number of alternative scenarios needed
to have a representative sample. The dimension of the representative sample is therefore
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associated with the variability at the source and not with the variability of the estimated concentration
fields because only the mass flux at the sources is considered stochastic, i.e., flow and transport
are modeled deterministically.
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In Equation (3) k stands for the number of alternative scenarios, z denotes the upper α/2 point
of the standard normal distribution, and P is the number of original samples (proposed here to be

the number of cells inside the emission area), such that 2
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d
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Optimizing the monitoring network

The optimization problem is stated as: find the locations for installing monitoring wells that
guarantee the highest reliability (accuracy and precision), i.e., that best quantify i) the spatial
variability of concentrations; ii) contaminated area and volume. Accuracy is measured as the
kriging variance (variance of the estimation errors) and precision as the mean absolute error
calculated between the concentration estimates obtained with the entire population and those
obtained with a sample from that population. Kriging is a well-known estimation method that looks
for maximum accuracy. When estimating a variable in discretized spatial field (e.g., grid) with
kriging the following information will be obtained at each grid node (or grid area): i) the estimated
value; ii) variance of the estimation error (kriging variance). As will be seen below, the latter is
independent of the actual value of the variable at the grid node, being instead dependent on the
spatial distribution of the original data used in the estimation. This feature makes it possible to alter
the location of original data locations and evaluate its effect in the estimated accuracy. Consider
as the population all the central nodes of the cells in the conceptual model used to estimate the
receptor concentrations (of very large size, say, N). Consider also that all these nodes are
alternative locations to install monitoring wells (the sample). As it is impractical and unnecessary
to monitor in all locations (entire population) some of them will have to be chosen (both sample
size, n, such that n < N, and their location). This result is a combinatorial problem with a solution
space of size equal to the number of possible combinations when extracting n elements from a
population of size N., which attain very large numbers even for small n and N. Testing exhaustively
all solutions is therefore impossible for most practical cases. Problems of this combinatorial
nature are usually very hard to solve, and no solution may be attained in polynomial time
(calculation time grows with the dimension of the problem (combinations) faster than any
polynomial function). Some alternative optimization algorithms have been proposed to obtain a
solution (a minimum or a maximum), but in most cases there is no guarantee that the solution is
optimal (the minimum of the minima, or maximum of the maxima). The most successful
algorithms proposed to solve such problems are the metaheuristics Simulated Annealing (SA),
Tabu Search (TS), Genetic Algorithms (GA), Ant Colonies (AC), other nature-based algorithms
(e.g., Sworm Intelligence), combinations of these with each other, and combinations with more
classical methods such as branch-and-bound (-cut), linear programming, and gradient methods. Of
these the only with demonstrated convergence to the optimal value is SA, but this will, unfortunately,
only happen for very large processing times (very large Markov chains) (Aarts and Korst, 1990;
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Laarhoven and Aarts, 1987). SA has also been demonstrated to be a very powerful algorithm to
solve positioning problems (Nunes et al., 2004). In the following a more thorough discussion is
presented of both the kriging estimation method and the simulated annealing optimization
algorithm, before presenting the objective function.

Kriging

The values of a variable at the sampled points in the field can be considered as realizations of
a set of random variables in a field Γ.  A set of random variables defined in a field Γ is a random
function. The most common theory considers that the random function is invariant under
translation. Strictly, the restrictive hypotheses are applied only to the first two moments, hence
they are only required to exist and be independent of space coordinates (second order stationarity),
or the spatial covariance of the variable should be dependent only on the distance h between two
coordinates. In this case only the spatial increments have to be stationary (intrinsic stationarity).
If these increments are made at step h, then the resulting expression is called the variogram. A
linear estimation of concentration, C can be obtained from p data points by

∑
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which is unbiased if the sum of the weights κi is one. This is a common requirement in several
estimation methods, and also in kriging.  The estimation variance (kriging variance) is expressed
by (Journel and Huijbregts, 1978),
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with γ(hiA) the average variogram between locations with known concentration and the cell to be
estimated, A; γ(hAA) is the average variogram inside the cell; m is the Lagrange parameter; κi are
kriging weights. The estimation variance is a measure of the estimation accuracy of C. Because
σE

2(A) only depends on the geometric configuration of the data points, once a variogram model
is defined, it is possible to change data locations and calculate the estimation variance again. The
spatial arrangement of points that minimizes σE

2(A) has the lowest estimation variance, and this
therefore best reflects the spatial correlation introduced in the variogram model. As the estimation
variance is a local measure of accuracy (at A), a global measure is needed to allow the comparison
of two alternative spatial configurations. Woldt and Bogardi (1992) proposed an average measure
of estimation variance weighted by prior suspicion of the value C, and the average measure of
kriged contamination level weighted by estimation variance as the global measure. Here an
analogous measure is used, but considering equal weights, i.e., a simple mean of the estimation
variance,
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where Ai denotes each of the cells to be estimated, and N is the number of model cells to be
estimated. The cells are then identified by N points (e.g., their central points). Equation (6) reflects
the accuracy of estimating with a set of stations, and the more accurate the estimates, the lower
the mean estimation variance. Therefore, a set of stations with a spatial configuration that will
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generate an estimated field with lower mean estimation variance will be preferred to another set
with a higher variance.

Simulated annealing

Simulated annealing is classified as a metaheuristic algorithm, devised as a top-level general
strategy which guides other heuristics to search for feasible solutions in domains where the task
is hard. Metaheuristics have been most generally applied to problems classified as NP-Hard or NP-
Complete by the theory of computational complexity. However, metaheuristics can also be
applied to other combinatorial optimization problems for which it is known that a polynomial-time
solution exists but is not practical. They can be seen as a general algorithmic framework which can
be applied to different optimization problems with relatively few modifications to make them
adapted to a specific problem. Other examples of metaheuristics are Tabu Search, Genetic
Algorithms and Mimetic Algorithms. Simulated Annealing (SA) is an analogy between the way in
which a metal cools and stabilizes into a minimum energy crystalline structure (designated in
metallurgy as the annealing process) and the search for a minimum in a more general system. The
algorithm is based upon that of Metropolis et al. (1953), which was originally proposed to find the
equilibrium configuration of a collection of atoms at a given temperature. The connection between
this algorithm and mathematical minimization was first proposed by Kirkpatrick et al. (1983) and
Cerny (1985) who proposed that it form the basis of an optimization technique for combinatorial
(and other) problems. SA’s major advantage over other methods is an ability to avoid becoming
trapped at local minima. The algorithm employs a random search which not only accepts changes
that decrease objective function, but also some changes that increase it. The latter are accepted
with a, usually decreasing, probability as the annealing process evolves. The Metropolis criterion
is as follows: consider that the change in the objective function is ∆σE

2; if ∆σE
2 ≤ 0, then the change

in the system is accepted and the new spatial configuration is used as the starting point in the next
step; if ∆σE

2 > 0 then the probability that the change is accepted is determined by P(∆σE
2) = exp(-

∆σE
2/t), where t is a control parameter called temperature; a random number uniformly distributed

in the interval (0,1) is taken and compared with the former probability; if this number is lower than
P(∆σE

2)  then the change is accepted. The SA algorithm runs as follows: i) the system is melted at
a high temperature (initial temperature, t1); ii) the temperature is decreased gradually until the
system freezes (because no better solutions are found and the probability of uphill steps is near
zero); iii) at each iteration the Metropolis procedure is applied; iv) if any of the stopping criteria
are reached the algorithm is stopped and the best solution found is presented. The generic SA
algorithm for a minimization, considering a neighborhood structure χ , and an objective function
σE

2  has the following pseudo-code:

Select an initial solution Xbest;

Select an initial temperature t1>0;

Select a temperature reduction factor, η;

Repeat

   Repeat

      Randomly select X ∈ χ (Xbest);

        ∆σE
2 = σE

2 (X) – σE
2 (Xbest);
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           if ∆σE
2≤0 then

           Xbest = X

          otherwise

          generate random θ uniformly in (0,1);

          if θ<exp(-∆σE
2/t) then Xbest = X;

   Until iterations = max_iterations

   Set t = η t;

Until stopping conditions = true;

Xbest is the optimal solution found.

Several improvements have been proposed to speed up the process, namely, by limiting the
dimension of the Markov chain (max_iterations) and the number of successful solutions
(max_best) at each temperature, whichever comes first. If the average value of the OF does not
change after a pre-established number of temperature decreases, then the annealing may also be
stopped. These parameters control the time spent at each temperature and the total running time.
Along with these dynamic criteria, a static one may be used to halt the process when a minimum
temperature, is reached. This will guarantee that the annealing stops if none of the dynamic criteria
are fulfilled, even before the total number of iterations is attained. In our algorithm both the
dynamic and the static criteria were implemented. The initial temperature, t1, is calculated by
running a fast (rapid temperature decrease) schedule and picking up the temperature for which
more than 95% of the iterations are accepted. Temperature is usually decreased at a constant rate,
η, usually close to one (e.g., 0.90 or higher). Aarts and Korst (1990) showed that SA can find
optimal solutions if equilibrium is attained at each temperature (constant objective function mean
and variance) and proposed a temperature schedule dependent on the objective function variance
to guarantee that outcome. Despite this very attractive characteristic, such a schedule tends to
converge too slowly. Other t schedules for optimality have also been proposed by Geman and
Geman (1984), Hajek (1988), and Siarry (1997). These however may take too long for many
practical problems (Cohn and Fielding, 1999). The wealth of practical experience with the faster
t schedule used here indicates that the solutions found should be good local optimal ones. In
practical terms: good approximate solutions are a compromise between relatively good solutions
in an amount of time significantly smaller than the one necessary to guarantee the very good quality
solutions provided (in theory) by slower schedules. In practice during the optimization procedure
the program will have to call the kriging routine in all iterations to compute a new kriging variance.
When the number of grid nodes is very large this computation is the bottleneck in computing times.
By construction SA is essentially a sequential algorithm difficult to parallelize. This means that
significant reductions in computation times may be more easily obtained by parallelizing the
kriging matrix. Our results, however, were obtained using the sequential procedure. We consider
here that the N central points of the model cells correspond to locations where it is possible to
install a monitoring well, and for which there is previous information about the “real value” at that
location. This “real value” is obtained by solving the advection-dispersion equation for mass
transport. Hence, by selecting n of these data points (n < N) and using them to obtain estimates at
the N points, it is possible to determine both the estimation error (difference between the estimate
and the “real value”), and the mean kriging variance (Equation (6)).



Journal of Environmental Hydrology                                Volume 18  Paper 1  January 201010

Groundwater Monitoring Optimization    Nunes

Objective function

Our objective was to study the influence of uncertainty of the sources (their position and
amounts released into groundwater) in the quality and spatial configuration of monitoring
networks. The uncertainty in the sources was modeled by i) making several equally probable
leakage scenarios (their number being identified by k, as determined by Equation (3)), ii)
estimating the concentrations at the N data points for each of the k scenarios; iii) make the SA
algorithm generate a solution with a set of n stations (X in the pseudo-code), evaluating the
objective function, and proceeding to a next solution, or stop, and presenting the final solution. The
objective function proposed here includes two terms: i) one for minimizing the mean estimation
variance; ii) one for minimizing the mean absolute estimation errors between the kriging estimates
with all N data points and those obtained with the n samples, and between all k scenarios. During
optimization, kriging estimates are calculated with the variogram model computed on the fiftieth
percentile (p50) over all k scenarios – at each N points there will be k data values, the p50 value is
chosen to calculate the variogram. This simplification is necessary to speed-up the computation
of the objective function by eliminating the need to compute all k estimates on all optimization
iterations. The first term of the objective function is calculated by Equation (6); the second term
is the mean absolute estimation error (Ψ) between all k scenarios and the kriging estimate, C*,
obtained with the sample of n stations:
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The unconstrained objective function is:
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The constants a and b are normalizing parameters that correspond, respectively, to the data
variance and maximum Ψ (obtained by making some prior SA runs with a very high initial
temperature), intended to make the maximum value of the objective function to be close to two.
This will make the relative contributions of the two terms similar, and makes easier the setting of
the annealing parameters (essentially the initial temperature) because the maximum value of the
objective function will remain below the value 2.0 whatever the values of k, N and n.

The proposed objective function includes a measure of the estimation accuracy, in the form of
the estimation variance, and a measure of precision, in the form of Ψ. The advantage of including
the latter term is that it adds information about how close the estimates, C*, are from the k “real
values”. This information will allow the inclusion of stations in the final monitoring network that
are more sensitive to the variability introduced by the uncertainty about the sources: the set of
stations that minimize Ψ will have a configuration best adapted to detect contamination plumes
even when these correspond to less probable contamination events (less frequent location of
leakage, and/or less frequent amount leaked). Each time the kriging routine is called, n data points
will be available for the routine to estimate the values at the N points (their estimated value and
corresponding kriging variance). The optimization algorithm feeds the kriging routine with
different spatial distributions of the n data points (solution), uses the estimated values to compute
the objective function (Equation (8)), and makes the change in the solution according to the
Metropolis criterion. New solutions are fed to the kriging routine until the SA algorithm reaches
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any of the stopping criteria. The algorithm, as implemented, does not allow the direct determination
of the best number of stations, n. This has to be evaluated iteratively by changing the value of n and
optimizing again. Usually, as more stations are added, the more accurate the estimates, though
marginal gains in accuracy tend to decrease for high n values (Nunes et al., 2003).

A specific FORTRAN 95 code was developed, OPTIVAR, that includes the kriging routine,
simulated annealing and the modules to pre- and post-process data from MOFLOW and MT3D
codes.

APPLICATION EXAMPLE

To test the method a hypothetical case study was created: i) porous unconfined aquifer; ii)
conservative solute; iii) industrial area with spatially variable leakage probabilities and leaked
quantities. The case study area consists in a region between two water bodies, one to the east and
another to the west, distancing 1400 m. The water level in both water bodies is considered constant,
and equal to 12 m to the former, and to 19 m to the latter, modeled as constant head boundaries
(black borders in Figure 1). Some parts of the boundaries are impervious, corresponding to very
low permeability rocks, modeled as inactive boundaries (grey boundaries in Figure 1). The aquifer
has a constant thickness of 20 m, modeled as single layer. Contaminant enters the aquifer through
the top, by leakage from an industrial area with 110 m E-W x 220 m N-S, modeled as contaminated
recharge (white rectangle in Figure 1). The model assumes constant source concentration, a
negligible volume of leachate relative to groundwater flow, and the leachate completely mixes
over the entire thickness of the aquifer beneath the plume source. The continuous mass flux (g/
m2.d) at each cell was computed by multiplying the effective emission by a constant recharge value
of 0.001 m3/m2.d. Simulation was made for 7300 days, corresponding to the time necessary for
a significant concentration of solute to reach the eastern water body. Simulation was made in
steady-state conditions. More domain and aquifer parameters are presented in Table 1.

The industrial area has several activities and/or infrastructures (pipelines, chemicals deposits,
and industrial processes) with different probabilities of a leak (dependent on the type of operation,
type and age of the equipment, maintenance, etc.). Probabilities associated with a leak are assumed
essentially age-dependent, and are therefore distributed in space according to the temporal
expansion of the plant in space (Figure 2b)). The amounts released are considered dependent on
14 types of activity, as shown in Figure 2a). Table 2 presents the parameters necessary to obtain
the leakage estimates. Values, though in accordance with reality, are fictitious.

0 200 400 600 800 1000 1200 1400
0

200

400

600

Figure 1. Model domain. Lines show piezometric heads (m). Industrial area is also shown - gray cells
indicate different leachate concentrations.
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The computation of k was made on the logarithms of concentration to keep variance within
reasonable intervals and because subsequent computations used log transformations of
concentrations. After setting the values of za/2=0.80, d=0.25 and P=242 (number of grid cells
inside the industrial area) in Equation (3) – i.e., accept a 25% error around the mean value for a two-
sided confidence level of 0.2 -, the stochastic generation of leaked concentrations inside the
industrial area was repeated for 30 times to obtain a mean value for k (being the effective emission
generation algorithm a stochastic one (recall that in a given cell both the probability of being
leaking and the amount leaked change each time a p value is taken), the value of se

2 is different each
time it is calculated, within a limited range, and hence so is the value of k.) The resulting k value
was 20 (rounded to the closest integer).  The following annealing parameters were used: t1= 1.0
or 2.0; η=0.9 or 0.95; max_iterations=5000; max_best=500 or 1000. The search for solutions

Table 1. Model domain and aquifer parameters.

Domain Mesh 
size 

K 
(isotropic) 

Effective 
porosity 

Longitudinal 
dispersivity 

Transverse 
horizontal 
dispersivity 

Transverse 
vertical 

dispersivity 
(m) (m) (m/d) - (m) (m) (m) 

1400 E-W x 700 
N-S 10 x 10 10 0.3 10 3 3 

 

Table 2. Parameters for the estimation of emissions inside the industrial area.
 Sub-area, i 

Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
mi 

(g/m3) 1500 1200 50 1 10000 40 80 200 700 1100 900 300 20000 1000 

δi 0.02 0.080 0.5 0.01 0.05 0.3 0.8 0.6 0.7 0.075 0.9 0.005 0.005 0.15 
pi See Figure 2 
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Figure 2. Industrial area: a) 14 sub-areas inside the industrial area; b) leakage probabilities.
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stopped when after three consecutive temperature decreases the average OF did not change. All
runs were made in a personal computer equipped with an Intel Pentium(R)M processor (2000
GHz), 2.00 GB of RAM (797 MHz).

RESULTS AND CONCLUSIONS

Twenty (k) mass-transport simulations were made with MT3D for 7300 days. Figure 3 shows
one example of a concentration field, where the high concentration variability near the sources is
very clear: monitoring wells wrongly located may easily skip detection, or indicate a much lower/
higher average concentration.

The following n values were iteratively tested: 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90. For
each of these n values, at least three annealing runs were made with three different initial solutions
to test the algorithm for robustness (a total of 9 runs for each n). Adjustments to the annealing
parameters were made and the runs repeated whenever, with the same set of annealing parameters,
the values of the final solutions of optimization differed more than 5%. Results from the
optimization runs are presented in Table 3 and Figure 4. In the former is also presented: i) the
solution space size; ii) the value of the OF averaged over the 9 SA runs; iii) corresponding standard
deviation; iv) the value of the best final solution; and v) the averaged optimization run time. The
values of the standard deviation of the mean OF are very low for all tested n, which is a consequence
of the criterion for accepting final solutions; another consequence is the proximity of the best OF
value to that of the mean. One interesting aspect is the growth in running time, which does not

Figure 3. Example of a solute concentration plume after 7300 days (g/m3). Overlapping figure is a
zoom in on the emission area.

Table 3. Optimization results.

n Solution space size 
Log(combinations) Average of OF St. dev. of 

OF Best OF Average run 
time (s) 

10 19.26 0.8212 0.0017 0.8196 29931 
15 26.56 0.8000 0.0041 0.7942 8806 
20 33.13 0.7926 0.0062 0.7840 5025 
25 39.13 0.7779 0.0062 0.7779 37460 
30 44.67 0.7695 0.0017 0.7675 5189 
40 54.64 0.7636 0.0019 0.7629 5758 
50 63.41 0.7613 0.0003 0.7609 8176 
60 71.17 0.7670 0.0005 0.7590 22018 
70 78.09 0.7662 0.0005 0.7658 39895 
80 84.24 0.7668 0.0005 0.7668 82114 
90 89.72 0.7636 0.0004 0.7632 77065 
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follow the relative increase in the solution space (number of combinations): the time necessary
to solve for n = 80 is only one order of magnitude higher than for n = 15, despite the increase of
more than 57 orders of magnitude in the solution space. This may be the consequence of a fast
cooling schedule (combination of both the cooling rate, η, and the dimension of the Markov chain
at each temperature) considered as necessary to obtain good solutions in a reasonable amount of
time (the runs for n = 80 already took almost one day each). Higher cooling rates (e.g., 0.975) were
tested, but resulted in only marginally better (<5%) OF values; increasing the dimension of the
Markov chain up to 5 times also did not improve the value of the OF. Important gains are expected
with much higher cooling rates and/or increases in the dimension of the Markov chain higher than
one order of magnitude. Both of these changes would, however, shoot the running times to values
in the order of several days or weeks. We believe that the cooling schedule used here is the best
suited to the problem, by keeping running times within reasonable times, while generating
solutions of very good quality.

Figure 4 shows the SA convergence curves for the best final solutions for each of the n values,
and the value of OF for different number of stations in the monitoring network. Common features
to all convergence curves are: i) the evolution from high OF values to lower ones; ii) higher
variability at higher temperatures; iii) in general, as more stations are added, the lower the OF value,
up to a certain point. The first two features result from the algorithm itself by allowing more moves
to worst solutions at higher temperatures, and by slowly reducing the probability of this happening
as temperature decreases. The latter feature is case-specific and is a result from the OF equation:
the spatial accuracy term causes the OF to decrease as more stations are added; however the second
term will penalize stations with higher estimation error, and therefore as more stations are added,
more stations with high errors will have to be included (though some of the effect may be dampened
by the higher estimation precision of kriging). This may explain the reduction in the marginal OF
gains as more stations are added, and also the increase observed for n > 60 (Figure 4b). Considering
the stabilization in marginal OF gains after n = 60, there seems to be little interest in adding more
stations beyond this point.

After having obtained the ideal n value, and the optimized spatial distribution of stations (see
Figure 5), there is still the question of whether a more empirical approach would have given better
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Figure 4.  a) SA convergence curves for the runs with the best OF; b) tradeoff between number of stations
in the monitoring network and OF value.
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results. By empirical we understand that a decision maker will preferably allocate the stations in
places where he expects higher concentrations, or use a traditional sampling design, of which the
stratified sampling is one of the most widely used. The first approach will increase the probability
of detecting the highest values when the network is very dense and concentrated near the origin,
but will most probably leave undetected areas with lower concentrations. Moreover, it makes the
estimate of the affected area and water volume very difficult. The latter approach usually allows
better representation of concentration fields, but the precision depends on the density of the
sampling. Both these methods will, however, disregard any complementary information. We make
below a comparison between the optimized networks and two of such empirical network designs:
i) empirical clustered, where stations are located near the source in a regular grid; ii) empirical
stratified, where stations are located in a regular grid twice as narrow near the source as further
westward. Figure 5 shows the proposed monitoring networks for n = 60 (the other n are not shown
due to space limitations); Table 4 presents some statistics obtained for a sample size of n: i)
estimated average concentration (eac); i) variance of estimated average concentration (as before)
(veac); iii) estimated mean kriging variance (mekv), i.e., the mean kriging variance computed for
all N data points with the sample and the variogram model used before (on the p50 of concentrations);
iv) mean absolute estimation error (maee), computed between the values estimated by kriging with

0 200 400 600 800 1000 1200 1400
0

200

400

600

Figure 5. Resulting n= 60 monitoring networks: •: Optimized network; o: empirical stratified; +: empirical
clustered.

Eac: Estimated average concentration (g/m3); veac: Variance of estimated average concentration (g/m3)2;  emkv: Estimated mean
kriging variance (g/m3)2;  maee: Mean absolute estimation error between the original field and the field estimated with n stations
(g/m3) – is a measure similar to the one used in the objective function, but calculated with only two fields.

Table 4.  Statistics for optimized and empirical networks (see text). Values as Log (concentration).
n Optimized networks Empirical stratified Empirical clustered 
 eac veac emkv maee eac veac emkv maee eac veac emkv maee 

10 -0.864 1.782 4.705 1.269 0.907 0.406 6.382 2.733 1.039 0.827 5.440 2.858 
15 -0.788 1.841 3.949 1.238 0.348 0.731 5.675 2.219 0.534 0.641 5.631 2.546 
20 -0.626 2.217 3.684 1.285 0.308 0.822 5.606 2.161 0.742 1.000 5.320 2.667 
25 -0.975 2.478 3.621 1.120 0.348 0.979 5.271 2.105 0.917 1.222 5.134 2.800 
30 -0.744 2.943 3.340 1.071 0.114 1.496 5.025 1.859 0.919 1.272 5.116 2.808 
40 -0.852 2.916 3.221 0.991 -0.024 1.705 4.906 1.691 0.787 1.565 5.359 2.748 
50 -0.885 3.074 3.163 0.917 -0.119 3.068 4.339 1.522 0.083 2.946 4.831 1.709 
60 -0.905 3.120 3.145 0.891 -0.198 3.225 4.321 1.445 1.005 1.326 5.971 2.806 
70 -0.904 3.032 3.289 0.940 -0.488 2.474 3.956 1.167 1.009 1.320 5.911 2.809 
80 -0.874 2.958 3.318 0.982 -0.518 2.537 3.971 1.139 0.544 2.265 5.675 2.931 
90 -0.917 3.136 3.273 0.917 -0.520 2.534 3.972 1.136 0.430 1.861 5.417 2.817 
R -1.617 5.662           
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the sample, and the original p50 concentration data, for all N data points. These statistics will give
some insight as to, respectively: i) the bias introduced in the (measured by the network) mean
receptor concentration estimated with the sample; ii) idem for the variance; iii) bias in the accuracy
of estimation – incorrect position of monitoring stations may lead to highly inaccurate estimation
of spatial variability of receptor concentrations; iv) bias in the estimation of mean values over the
field – incorrect estimation of contaminated volumes and areas. Best spatial distributions have
values of the first two statistics closest to the reference field, R (obtained with all data points); and
values of the latter two closest to zero.

The statistics are shown in Table 4 where the best values are underlined. It is evident the much
better performance of the optimized design over the empirical, with the only exception of n = 60,
for which the veac is closer to the reference in the stratified design. This may be explained by the
fact that the more regular design captured best the data variability, i.e., the samples collected best
represented the “real” data variability. However, this design was very poor with regard to all the
other statistics, making it a second choice over the optimized design. The results shown graphically
in Figure 5 report only to the case of n = 60, where the significantly different spatial distributions
are clear. The same results were also observed for other values of n (not shown here for space
limitations). Another interesting result is the convergence in the performance of the stratified
method to the optimized one as n increases, unlike the clustered method (see Figure 6). This may
indicate that stratified designs may work well when the number of stations is high to very high, but
may never attain the performance of optimized methods. This conclusion shows that case-specific
methods will work best (as they should).

Figure 6. Comparison of methods for locating stations. a) eac; b) veac; c) emkv; d) maee.
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