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Spatial heterogeneity of the watershed characteristics such as soils, land use, and topography
can have an important influence on the hydrologic response of large watersheds. Understand-
ing the effects of spatial heterogeneity on hydrologic parameters is essential to develop water
quality improvement programs. Hydrologic models have been used to investigate the interac-
tion between various watershed characteristics. This study was conducted in the Upper Pearl
River watershed (UPRW) in east central Mississippi to evaluate the spatial heterogeneity effect
on hydrologic responses using the Soil and Water Assessment Tool (SWAT). The SWAT model
was calibrated from January 1981 to December 1994 and validated from January 1995 to
September 2008 using five USGS gage stations monthly measured stream flow data. The
calibrated and validated SWAT model was used to evaluate spatial heterogeneity effects at the
UPRW. Five sub-basins of the UPRW were selected based on their size, soils, topography, and
precipitation inputs to investigate their interactions on water yield, groundwater yield,
potential evapotranspiration (PET), sediment yield, and total phosphorus yield. Model results
determined that the spatial heterogeneity effects were the greatest for the groundwater yield
(100%) followed by sediment yield (44%), water yield (40%), total phosphorus yield (33%), and
potential evapotranspiration (7%) from the selected five sub-basins. Overall, the results
indicate that the UPRW hydrology is very sensitive to spatial heterogeneity of the watershed.
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INTRODUCTION

Every watershed is heterogeneous in nature. Hydrologic response of the watershed is dependent
on spatially variable watershed parameters such as topography, soils, landuse, and watershed
management effect in the hydrologic responses of the watershed. In addition to watershed
parameters, human activities also affect hydrologic processes. Human activities affect in generating
and carrying pollutants such as sediment, nitrogen, and phosphorus. Such diffuse pollutants can
affect the quality of ground water, surface water, and the aquatic environment causing eutrophication
(Davis and Koop, 2001).

Huang and Lee (2009) investigated the effects of spatially heterogeneous roughness on
hydrological response systematically using a non-inertia wave model that was developed to
generate hydrographs at the end of the overland plane for certain rainstorms. Spatially heterogeneous
roughness had significant influence on runoff generation, which ought to be handled with care in
hydrological simulations. They employed a conceptual model to represent natural watershed
conditions. However land use, soil and slope characteristics of the natural watersheds may
produce significantly different results.

Wang et al. (2010) examined the land use–soil interactive effects on water and sediment yields
for the 1,178 km2 drainage area within the Cowhouse Creek watershed located in north central,
TX. The SWAT model was calibrated and validated using the observed daily stream flows from the
USGS gage station. They found significant difference in annual water yield due to land use and soil
interactions. They have compared the SWAT model results placing and removing range brush grass
in different State Soil Geographic Database (STATSGO) soil polygons such as TX251 and TX609.
However they did not evaluate the model results based on the size of the sub-basins or area of each
soil polygons distributed in the watershed. They have recommended that the land use–soil
interactive effects should be considered to develop the best management practices for improving
watershed health and sustainability.

Pease et al. (2010) applied Annualized Agricultural Nonpoint Source (AnnAGNPS) model to
evaluate non-point source pollution in the Pipestem Creek watershed upstream of Pingree, ND.
The AnnAGNPS model outputs determined a poor correlation between observed and model
predicted sediment and nutrients data. They concluded that the model’s poor performance was
most likely a result of the large size of the study area and the high variability in land use and
management practices. Further study on interaction of land use, managements, and other factors
were needed.

Nutrient export from overland flow and streams located in agriculturally dominated watersheds
has been linked to large environmental pollution such as hypoxia in the Gulf of Mexico (Goolsby
et al., 2001). However, pollutant sources in the watershed are spatially distributed. More research
on spatial heterogeneity at the watershed scale would provide better understanding of the
mechanisms by which pollutants are transported and potentially retained in these systems.

Pathogens, sediment, and nutrients are the top three leading pollutants in U.S. rivers and streams
(USEPA, 2008). However, in Mississippi the top three causes of impairments for rivers and
streams are sedimentation, biological impairments, and fecal coliform. The organic enrichment
and nutrients are ranked fourth and fifth in the State of Mississippi (USEPA, 2008). The UPRW
drains in to the Ross Barnett Reservoir (RBR) near Jackson, Mississippi (Figure 1). The RBR is
one of the largest Mississippi’s surface water reservoir used for drinking water supply. It is the
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main source of drinking water for about 200,000 people living in the city of Jackson and
surrounding area. Accurate prediction of hydrology allows us to accurately predict loads of water
quality pollutants. Despite many studies performed on the quantification of the pollutant loadings
from the watershed, spatial heterogeneity of watershed characteristics (e.g. land use, soils,
topography) affects the hydrologic responses and pollutant yields from the watershed is still
scarce. Assessing and identifying the spatial heterogeneity of the watershed areas help us to
develop watershed management plans.

Watershed modeling tools are used to investigate hydrology and pollutant transport processes.
The Soil and Water Assessment Tool (SWAT, Arnold et al., 1998) model has been extensively
applied for hydrologic and pollutant transport modeling (Gosain et al., 2005; Vache et al.,2002;
Varanou et al., 2002; Parajuli 2008). The SWAT water quality model has been calibrated, and
validated for quantifying pollutants loads such as sediment yield, phosphorus yield from watersheds
in different geographic locations, conditions, and management practices (Borah et al., 2005; Cho
et al., 2009; Chu and Shirmohammadi, 2004; Qi and Grunwald, 2005; Gassman et al., 2007; Gosain
et al., 2005; Parajuli et al., 2008; Parajuli et al., 2009; Vache et al.,2002; Varanou et al., 2002; Van
Liew et al., 2003; White and Chaubey, 2005; Wang et al., 2006).

Studies involving the application of the SWAT model to understand the effects of spatial
heterogeneity on the hydrologic response and pollutant yield from the watersheds are limited.

The objective of this research was to: (a) evaluate the spatial heterogeneity of watershed areas
on hydrologic and pollutant yields within the watershed.

METHODS AND MATERIALS

Watershed

This research study was applied at UPRW, which is located in the east-central Mississippi. The
UPRW is comprised of ten Counties (Choctaw, Attala, Winston, Leake, Nesobha, Kemper,
Madison, Rankin, Scott and Newton), which covers area of 7,588 km2 (Figure 1). The land use of
the watershed is comprised of forest land (70%), grassland (20%), urban land (6%) and others
(4%). The fine-sandy-loam and silt-loam textured soils are a major predominant soil type in this
watershed.

SWAT Model

The SWAT model as described by Arnold et al. (1998) is a physically-based, watershed-scale
model that operates continuously on a daily time-step. It was developed to simulate long-term
runoff, sediment, nutrients, and pesticide transport from agricultural watersheds. The SWAT
model uses hydrologic response units (HRUs) based on unique land use/land cover, soil, and slope.
The HRUs are necessary to accurately consider possible effects of spatial and temporal variations
in parameters on hydrological processes, sediment, and nutrient simulations. The hydrology
component of the model calculates a soil water balance at each time step based on daily amounts
of precipitation, runoff, evapotranspiration, percolation, and base flow. Simulations are performed
at the HRU level and summarized in each sub-watershed. The simulated variables (water, sediment,
nutrients, and other pollutants) are routed through the stream network to the watershed outlet.
SWAT incorporates the effects of weather, surface runoff, evapotranspiration, crop growth,
irrigation, groundwater flow, nutrient loading, pesticide loading, and water routing, as well as the
long-term effects of varying agricultural management practices (Neitsch et al., 2005). In the
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hydrologic component, runoff is estimated separately for each sub-watershed of the total
watershed area and routed to obtain the total runoff for the watershed. Runoff volume is estimated
from daily rainfall using modified Soil Conservation Service – Curve Number (SCS-CN) and
Green-Ampt methods. Due to input data availability, the SCS-CN method (SCS, 1972) was adopted
in this study. The rainfall input in the SCS-CN is a key to estimate runoff. A kinematic storage
model is used to predict lateral flow in each soil layer (Sloan et al., 1983). The model accounts for
variation in conductivity, slope and soil water content. The SWAT model uses three potential
evapotranspiration methods: the Penman-Monteith method (Monteith, 1965; Allen, 1986; Allen
et al., 1989), the Priestley-Taylor method (Priestley and Taylor, 1972) and the Hargreaves method
(Hargreaves et al., 1985). This study used Penman-Monteith method to estimate potential
evapotranspiration.

SWAT Model Input

The SWAT model uses various sets of geospatially referenced data to create layers of
information to satisfy the necessary input parameters. The model requires input of a Digital
Elevation Model (DEM) data, land use, and soils, as well as time series of climate data such as daily
precipitation, and temperature as described by Neitsch et al., (2005). United State Geological
Survey (USGS, 1999) 7.5-minute (30m x 30m grid) digital elevation model (DEM) data was used
to delineate watershed boundaries and topography. The STATSGO was used to create a soil

Figure 1.  Location map of Upper Pearl River watershed in east-central Mississippi showing USGS
streamflow gages and climate stations.
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database (USDA, 2005). The cropland data layer (USDA/NASS, 2008) was used to develop land
use data for the watershed. The model inputs climate data from all available weather stations
(NCDC, 2009) from ten Counties (Choctaw, Attala, Winston, Leake, Nesobha, Kemper, Madison,
Rankin, Scott and Newton) were used.

SWAT Model Calibration and Validation

The parameters in the SWAT 2005 were manually calibrated in this study since Green and
Griensven (2007) suggested this is the preferred method of calibrating the model. Six parameters
that influence the prediction of stream flow were calibrated in this study (Table 1).  The parameters
were the curve number (CN), soil evaporation compensation factor (ESCO), base flow alpha factor
(ALPHA_BF), surface runoff lag coefficient (SURLAG), groundwater “revap” coefficient
(GW_REVAP), and threshold depth of water in the shallow aquifer (GWQMN).  The six
parameters calibrated in this study were selected based on previous studies (Santhi et al., 2001;
Saleh and Du, 2004; White and Chaubey, 2005; Choi et al., 2005; Neitsch et al., 2005; Gassman
et al., 2007; Parajuli et al., 2009).

The stream flow calibration was performed by adjusting the curve number (CN) parameters for
different land uses, which include: pasture (PAST), deciduous forest (FRSD), evergreen forest
(FRSE), mixed forest (FRST), urban institutional (UINS), wetland forest (WETF), soybean
(SOYB), and corn (CORN). The CN is a soil moisture balance parameter that allows the model to
modify soil moisture condition of the soil to estimate surface runoff (Neitsch et al., 2005). As the
value of CN is reduced, the model allows less water to runoff from the surface.

The soil evaporation compensation factor (ESCO) allows the user to modify the depth
distribution used to meet the soil evaporative demand to account for the effect of capillary action,
crusting and cracks. The esco must be between 0.01 and 1. As the esco value is reduced, the model
is able to extract more of the evaporative demand from lower levels. The base flow alpha factor
(ALPHA_BF) is a base flow recession constant, is a direct index of groundwater flow response to
change in recharge. Values 0.1-0.3 are used for land with slow response to recharge and from 0.9

Parameter Range Final Values 
Curve Numbers (CN)   

Pasture (PAST) 74-86 79 
Deciduous forest (FRSD) 70-77 77 
Evergreen forest (FRSE) 70-77 70 

Mixed forest (FRST) 70-77 73 
Urban institutional (UINS) 77-94 92 

Wetland forest (WETF) 70-77 77 
Soybean (SOYB) 85-90 89 

Corn (CORN) 85-90 89 
Soil evaporation compensation factor (ESCO) 0.01-1.0 0.4 

Base flow alpha factor (Alpha_BF) 0-1.00 0.90 
Surface runoff lag coefficient (SURLAG) 1-12 1 
Ground water "revap" coefficient (GW_REVAP) 0-1 0.2 

Threshold depth of water in the shallow aquifer (GWQMN) 0-5000 1000 
 

Table 1.  Parameters range and final values used in the SWAT model calibration.
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to 1.0 for land with a rapid response. The surface runoff lag coefficient (SURLAG) controls the
fraction of the total available water that will be allowed to enter the reach on any one day. As surlag
value decreases, more water is held in storage. The groundwater “revap” coefficient (GW_REVAP)
allows the movement of water from the shallow aquifer to the overlying unsaturated zone. As the
coefficient approaches 0, movement of water from the shallow aquifer to the root zone is
restricted. As it approaches 1, the rate of transfer from the shallow aquifer to the root zone
approaches the rate of potential evapotranspiration. Threshold depth of water in the shallow aquifer
(GWQMN) is the threshold depth of water in the shallow aquifer required for return flow to occur.
Groundwater flow to the reach is allowed only if the depth of water in the shallow aquifer is equal
to or greater than GWQMN.

The SWAT model predicted monthly stream flow results were compared with the USGS gage
stations data during the model calibration and validation process. Model predictions were
statistically evaluated with the coefficient of determination (R2), and Nash-Sutcliffe Efficiency
Index (E) between measured values and model-predicted values after each model run changing
parameters. Model input parameters were continuously modified during the calibration phase until
simulated stream flow was within R2 = 0.5 and E = 0.5. Stream flow calibration initially used model
default parameters. The CN parameters were continuously modified within the range of values
during the calibration phase to find the local maximum value that has maximum model efficiency.
The CN range of 70-92 (70 for evergreen forest, 73 mixed forest, 77 deciduous forest and wetland
forest, 79 for pasture, 89 for soybean and corn, and 92 for urban institutional) determined the
maximum efficiency range to use in the models. Similarly, the esco factor of 0.40, base flow alpha
factor of 0.9, surlag coefficient of 1, groundwater “revap” coefficient of 0.2, and threshold depth
of water in the shallow aquifer of 1000 had demonstrated local maximum value of model
efficiency. After model calibration, input parameters were not changed during the model validation
process.

Base Flow

Separation of the base flow component from the stream flow is generally performed using base
flow separation analysis. The shape of the hydrograph from the base flow separated stream flow
varies depending on physical and meteorological conditions in a watershed (Bendient and Huber,
2002). Although various sections of Pearl River including its tributaries contribute low flow in
various seasons, they are considered perennial streams. To accurately estimate water quality
parameters using SWAT, the hydrologic component of the model is typically validated first as the
hydrology is the driving force of other pollutant transport such as sediment and total phosphorus
in the watershed. For validation of hydrology component of the SWAT model, direct runoff and
base flow components of the stream flow hydrograph typically need to be separated because direct
runoff and base flow are usually simulated separately in computer models (Srinivasan and Arnold,
1994). This study used a web-based hydrograph analysis tool for base flow separation (Kyoung et
al., 2005). The recursive digital filter method (Eckhardt, 2005) was selected for base flow
separation with a filter parameter of 0.98 and maximum base flow index (BFImax) of 0.80. The
BFImax indicates the ratio of base flow to the total flow. A BFImax of 0.80 generally represents
perennial streams with porous aquifers like the Pearl River in the UPRW. The percentage of
average base flow separated from the total flow from five USGS gage stations are presented in the
flow validation section of the results and discussion.



Journal of Environmental Hydrology                                    Volume 19  Paper 18  July 20117

Spatial Heterogeneity and Watershed Hydrologic Response    Parajuli

Watershed Management Conditions

The UPRW is a forest dominated watershed. Forest land consists of 22% evergreen trees, 20%
mixed trees, and 30% deciduous trees. Pastureland covers about 20% of the watershed area and
typically includes Bahiagrass (Curt Readus, USDA/NRCS, Pearl area office, 2009, personal
communication). A minor (~2%) land use of the UPRW covers cropland. Corn, cotton, soybean,
peanuts and vegetables are typically grown in the watershed. Typical planting and harvesting dates
are April 15 and September 15 for warm-season crops and October 15 and June 15 for cool-season
crops. Crop residue is left on the ground between the crop periods. Minimum tillage is typically
applied for crop cultivation in the watershed (Curt Readus, USDA/NRCS, Pearl area office, 2009,
personal communication). This study considered land application of three major nutrient pollutant
sources: livestock, chicken litter, and failing septic systems in the UPRW as described by Parajuli
et al., 2010.

Spatial Heterogeneity

The effects of spatial heterogeneity of this watershed was evaluated with three hundred and
thirty three months (from January 1981 to September 2008) of model simulation results for
monthly water yield, groundwater yield, potential evapotranspiration, sediment yield, and total

Table 2.  Spatial characteristics of the selected sub-basins within the Upper Pearl River watershed.
Sub-basins Area (km2) Average slope (%) Dominant soil texture Dominant landuse 

3 1,338 3.3 Silt loam Woodland 
7 1,821 5.6 Sandy loam Woodland 
12 1,567 2.9 Silt loam Woodland 

22 1,527 3.5 Silt loam Woodland 

25 1,784 4.6 Sandy loam Woodland 
 

 

Figure 2.  Five sub-basins with buffered stream lines with forested wetlands.
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phosphorus yield from the five sub-basins of the watershed (Table 2; Figure 2). Model estimated
monthly precipitation values for each sub-basin were also evaluated.

Weather Data

The model inputs climatic data from eleven (Ackerman, Canton, Carthage, Forest, Gholson,
Kosciusko, Louisville, Newton, Philadelphia, Ross Barnett Reservoir and Walnut) weather
stations (NCDC, 2009) were used (Figure 1). Daily precipitation data for the UPRW were used
from all eleven weather stations. The daily temperature data were used for six weather stations
(Carthage, Forest, Kosciusko, Louisville, Newton and Philadelphia). The long-term (1981-2008)
annual average daily rainfall for the entire UPRW was estimated about 1,348 mm (Figure 3). The
data from six weather stations (State college, Russell, Forest post office, Meridian, Winona, and
Canton) were used as input in the SWAT model. The Forest Post Office weather station is located
inside the watershed whereas the other five weather stations are located between 8 to 45
kilometers from the watershed boundary.

Statistical Analysis

This study used mean monthly flow data measured by the USGS at five gage stations. Monthly
measured stream flow dataset was divided into a calibration period (1981–1994) and a validation
period (1995–2008). Each model performance period includes wet, dry, and normal years,
providing representative years for simulating the hydrograph of the UPRW basin. In order to
statistically test the accuracy of the calibrated stream flow output, this study employed two popular
methods (Parajuli et al. 2008; 2009): R2, and E. Model performances were classified as excellent
for R2 or E = 0.90, very good for R2 or E = 0.75 to 0.89, good for R2 or E = 0.50 to 0.74, fair for
R2 or E = 0.25 to 0.49, poor for R2 or E = 0 to 0.24, and unsatisfactory for R2 or E < 0 (Moriasi
et al., 2007; Parajuli et al., 2008; 2009).

Coefficient of determination (R2):

The R2 value indicates the consistency with which measured vs. predicted values follow a best
fit line (Equation 1). If the R2 values are less than or very close to zero, the model prediction is
considered unacceptable or poor. If the values are one, then the model prediction is perfect (Santhi
et al., 2001). However, R2 only describes how much of the measured dispersion is explained by
the prediction, therefore R2 is not suggested to be used alone (Maidment, 1993).

 

Figure 3.  Long-term (1981-2008) annual average precipitation (mm) in the watershed.
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where, O is the measured runoff (mm), P is the predicted runoff (mm), i is the time of the sample
measurement, n is the total number of measurements, and the over-bar denotes the mean
(measured or predicted) runoff (mm) for the entire time period of the evaluation.

Nash–Sutcliffe model efficiency index (E):

The E indicates the consistency with which measured values match predicted values, or the fit
of the data to a linear 1:1 measured vs. predicted best-fit line (Nash and Sutcliffe, 1970). The E
ranges from minus infinity (poor model) to 1.0 (perfect model). For example, if the square of the
differences between the model predictions and the observations is as large as the variability in the
measured data, then E = 0.0; if it exceeds it, then E < 0.0 (i.e., the measured mean is better than
predictor). Thus, a value of zero for the E indicates the measured mean, O, is a predictor as good
as the model while negative values indicate the measured mean is a better predictor than the model.
The E has been widely used to evaluate the performance of hydrologic models (Wilcox et al.,
1990). The limitation of the E is the fact that the differences between the measured and predicted
values are calculated as squared values. As a result larger values in a time series are strongly
overestimated whereas lower values are neglected (Legates and McCabe, 1999). The E is
calculated using the following Equation (2).
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where, O is the measured runoff (mm), P is the predicted runoff (mm), the over-bar is the mean
(measured or predicted) runoff (mm) for the entire time period of the evaluation, i is the time of
the sample measurement, and n is the number of samples measured.

RESULTS AND DISCUSSION

Table 3 summarizes the model calibration and validation efficiency values for monthly stream
flows for the five USGS gage stations. Twenty eight years of monthly measured stream flow data
were used to provide baseline calibration and validation for the SWAT model. Model was
calibrated using five spatially distributed USGS gage stations from January 1981 to December
1994 and validated using same USGS gage stations from January 1995 to September 2008 monthly
measured stream flow data within the UPRW except for the Lena USGS gage station. Lena gage
station used stream flow data from October 1997 to December 2002 for model calibration and
January 2003 to September 2008 for model validation.
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Flow Validation

Average base flow separation from the total flow from five USGS gage stations showed about
29% of the base flow and 71% of the surface flow from the UPRW watershed during the study
period (1981-2008), which is consistent with the 28.5% base flow and 71.5% surface flow as
predicted by the SWAT model.

The SWAT model calibration results showed good to very good performance for mean monthly
stream flow prediction (R2 from 0.69 to 0.79 and E from 0.68 to 0.79; Table 3). During the model
validation period SWAT model results generally demonstrated good to very good performance (R2

from 0.60 to 0.80 and E from 0.64 to 0.86) except at Ofahoma gage station for E (Table 3).

The results of this study were also compared with calibrated result against all monthly model
statistics reported by Gassman et al. (2007) from an extensive literature review of 115 published
SWAT hydrologic calibration and validation results for R2 and E values. The results of this study
were agreed with top 40 (35%) articles reported by Gassman et.al. (2007), which had the best
reported calibration and validation values. Confirmation of reasonable streamflow results provided
confidence that the further application of the model to assess hydrologic responses, sediment, and
phosphorus yield due to spatial heterogeneity of the watershed characteristics will have minimal
bias.

Spatial Heterogeneity

The calibrated and validated SWAT model results for the five selected watershed sub-basins
(Table 2) were analyzed to assess spatial heterogeneity of the watershed characteristics. These five
sub-basins were selected from different part of the watershed having different size, slope, and soil
textures.

Precipitation input is one of the major inputs in the SWAT model, which is a driving force for
the water balance component in the model (Neitsch et al., 2005). This study used long-term
precipitation data input in the model. There was up to 12% difference of average monthly
precipitation input in the model for the five selected sub-basins (Figure 4). The sub-basin 12
received the lowest average monthly precipitation input (116 mm) and the sub-basin 25 received
the greatest average monthly precipitation input (130 mm, Table 4).

Water yield (mm ) is a total amount of water leaving the sub-basin that enters to the main channel
during the model simulation period. It is the sum of surface flow, lateral flow, and groundwater
flow minus transmission loss and pond abstractions (Neitsch et al., 2005). The SWAT model
predicted average monthly water yield from five sub-basins showed that there was up to 40%
difference between sub-basins (Table 4). The SWAT model results determined that sub-basin 3 had
the lowest water yield (47 mm) and sub-basin 25 had the greatest water yield (66 mm). The average

Table 3.  Model efficiency during stream flow calibration and validation period.
Station Calibration period     Validation period  

 R2 E Slope      R2 E Slope  
Burnside 0.79 0.73 0.95    0.64 0.64 0.77   
Ofahoma 0.72 0.68 0.77    0.60 0.17 0.86   
Edinburg 0.76 0.75 0.81    0.68 0.65 0.70   
Lena 0.69 0.69 0.82    0.80 0.86 0.82   
Carthage 0.78 0.79 0.78      0.74 0.55 0.81  
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monthly water yield (mm) from the sub-basins were generally correlated with the size of the sub-
basins as expected (Figure 2, Figure 5, and Table 2) as the larger size of the sub-basin collects more
amount of water that leaves the field. However, the water yield outputs were also influenced by the
slope and precipitation input to the sub-basins as the sub-basin 25 (1,784 km2) had the greater
amount of average monthly water yield than sub-basin 7 (1,821 km2, Table 4).

Groundwater yield (mm) is the water from the shallow aquifer that returns to the reach during
the simulation period (Neitsch et al., 2005). The SWAT model predicted average monthly
groundwater yields from the sub-basins were varied significantly as the such difference were found
up to 100% (Table 4, Figure 6). The SWAT model results determined that sub-basin 22 had the
lowest groundwater yield (14 mm) and sub-basin 25 had the greatest groundwater yield (32 mm).
Although larger surface area or sub-basin size provides greater area to recharge the groundwater
flow from the shallow aquifer, it is also influence by the hydraulic conductivity of the soil or
aquifer. Hydraulic conductivity defined as the rate of movement of water through a porous medium
such as a soil or aquifer. Hydraulic conductivity of the soil parameters can differ with several
orders of magnitude each other. Hydraulic conductivity of the sandy soil can be up to 100 times
higher than of silt soil (Brassington, 1988). The dominant soil textures of the three sub-basins used
in this study were consists of silt loam (sub-basins 3, 12, and 22) and two sub-basins with sandy
loam soils (sub-basins 7 and 25). The hydraulic conductivity of the silt-loam and sandy-loam soils
in the model input were found significantly different as the hydraulic conductivity of the sandy-

Figure 4.  SWAT model cumulative precipitation data input during model simulation period.

 

Table 4.  Monthly mean SWAT responses from five sub-basins for the five parameters.
Parameter*/Sub-basin 3 7 12 22 25 

Precipitation input (mm) 120 127 116 119 130 
WY (mm) 47 63 48 49 66 

GWQ (mm) 16 24 16 14 28 
PET (mm) 125 116 122 124 119 

SYLD (metric ton/ha) 0.26 0.26 0.18 0.19 0.25 
TP (kg/ha) 0.04 0.04 0.04 0.03 0.03 

*WY = water yield,  GWQ = ground water yield, PET = potential evapotranspiration  
SYLD = sediment yield, TP = total phosphorus yield    
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loam soils (72 mm/hr) in the sub-basin 7 were up to 9 times higher than the silt-loam soils (8.2
mm/hr) in the sub-basin 3.

Potential evapotranspiration (mm) is the rate of evapotranspiration that would take place from
a large area completely and uniformly covered with growing vegetation which has access to an
limitless supply of soil water. This rate is assumed to be unaffected by microclimatic processes
such as advection or heat-storage effects (Neitsch et al., 2005). The SWAT model estimates the
potential evapotranspiration from the sub-basin during the simulation period. The SWAT model
predicted average monthly potential evapotranspiration yields from the sub-basins were slightly
varied having difference of up to 7% (Figure 7, Table 4). The SWAT model results determined that
sub-basin 7 had the lowest potential evapotranspiration yield (116 mm) and sub-basin 22 had the
greatest potential evapotranspiration yield (124 mm).

Sediment yield (metric tons/ha) from the sub-basin is the quantity of sediment transported out
of the reach during the simulation time step. The SWAT model predicted average monthly
sediment yield (metric ton/ha) from the sub-basins were varied having difference of up to 44%

Figure 6.  SWAT simulated cumulative groundwater yield from five sub-basins in the watershed.

 

 

Figure 5.  SWAT simulated cumulative water yield from five sub-basins in the watershed.
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(Figure 8). The SWAT model results determined that sub-basin 12 had the lowest sediment yield
(0.18 metric ton/ha) and sub-basin 3, and 7 had the greatest sediment yield (0.26 metric ton/ha).
The average monthly sediment yield (metric tons/ha) outputs from the sub-basins were correlated
with the slope of the sub-basins except at sub-basin 3 (Table 2, Table 4).

Total phosphorus is the sum of organic phosphorus, soluble phosphorus, and sediment attached
phosphorus yields estimated in this study. The organic and soluble phosphorus may be removed
from the soil via mass flow of water. Organic phosphorus yield (kg/ha) is the quantity of
phosphorus that is transported with sediment out of the reach during the simulation time step.
Soluble phosphorus is the quantity of phosphorus that is transported by surface runoff out of the
reach during the simulation time step. Mineral phosphorus is a quantity of phosphorus attached to
sediment that is transported by surface runoff out of the reach during the simulation time step.

The SWAT model predicted average monthly total phosphorus yield (kg/ha) from the sub-basins
were varied having difference of up to 33% (Table 4, Figure 9). The SWAT model results
determined that sub-basin 22, and 25 had the lowest monthly total phosphorus yield (0.03 kg/ha)

 

 

Figure 7.  SWAT simulated cumulative potential evapotranspiration from five sub-basins in the watershed.

Figure 8.  SWAT simulated cumulative sediment yield from five sub-basins in the watershed.



Journal of Environmental Hydrology                                    Volume 19  Paper 18  July 201114

Spatial Heterogeneity and Watershed Hydrologic Response    Parajuli

and sub-basin 3, 7, and 12 had the greatest total phosphorus yield (0.04 kg/ha).

Long-term average monthly estimates of the SWAT model results especially water yield,
groundwater yield, and potential evapotranspiration were interactively affected by the size of the
sub-basins, slope, dominant soil texture, and hydraulic conductivity of the soil. Results of this
study showed that there was no correlation of the sediment yield and total phosphorus yield from
the watershed sub-basins. It is similar to other studies performed using the SWAT model (Parajuli
et al., 2008; White et al., 2009). Spatial heterogeneity of the soils, land use, stream processes, and
governing equations used for the fate and transport of sediment and phosphorus in the model
affected these results. Sediment yield prediction in the SWAT model is generally affected by
factors including USLE crop management factor, USLE slope length factor, the slope of HRUs,
crop practice factor for land use, tillage operations, crops residue coefficient. However, the slope
of the HRUs in this study played a key role in sediment yield.

Phosphorus yield is generally affected by initial concentration of the nutrient in soils, fertilizer
application rates and location, initial concentration of the nutrient in soils, tillage operations, crop
residue coefficient, phosphorus percolation coefficient, and phosphorus soil partitioning
coefficient. In this study, beef manure, poultry litter, and nutrient source from failing septic
systems were applied in the pasture and woodlands of the watershed. All of the selected sub-basins
had applied fertilizers as a source of phosphorus. The in-stream water quality process in the model
was active in this study. The in-stream kinetics used in SWAT for nutrient routing are adapted from
QUAL2E (Brown and Barnwell, 1987). Table 5 below shows the total sub-basins area (km2), area
of the sub-basin receiving phosphorus inputs (km2), stream lengths (km) and stream lengths
buffered by forested wetlands (km). Non-buffered areas such as pasture land, and forested land
were located adjacent to the stream. The phosphorus loading from each sub-basin were also
affected by their stream lengths buffered with forested wetlands in the watershed (Table 4, Figure
2). The sub-basins 22 (80%) and 25 (69%) were the top two sub-basins that had the greatest stream
lengths buffered by the forested wetlands (Table 5).  The results presented here suggest that the
use of more distributed approaches is important when simulations are used to identify the
parameter or pollutant specific sub-basins in the watershed due to the impact of area, slope, and
soil texture. Lumped models are more likely to overestimate or underestimate the stream flow and

Figure 9.  SWAT simulated total phosphorus yield from five sub-basins in the watershed.
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pollutant loadings because they ignore the spatial effects of the watershed characteristics. The
spatial location of sub-basins, and pollutant transport algorithms in the model can also affect in
pollutant yield. Uncertainties in the representation of specific management actions will also vary
significantly depending on the nature and location of those actions.

CONCLUSIONS

This study evaluated the performance of the SWAT hydrology component under southeastern
U.S. conditions. The manual model calibration and validation process using twenty eight years of
measured monthly stream flow data determined good to very good model performance during
model calibration and validation (R2 from 0.60 to 0.80 and E from 0.64 to 0.86) except at Ofahoma
for E. The SWAT model over-predicted average monthly stream flow (27.05 cms vs. 19.43 cms)
by 39% during model calibration and by 78% during model validation (27.64 cms vs. 15.57) at
Ofahoma. The USGS measured data at Ofahoma showed 76 runoff events (> 10 cms) and the model
result determined 133 runoff events (> 10 cms) during model validation. Model determined runoff
events because there was consistent precipitation input in the model.

The SWAT model results were used to evaluate spatial heterogeneity effects at the UPRW. The
SWAT model results demonstrated that spatial interactions between size, slope, and hydraulic
conductivity of the sub-basins had great effects on various hydrologic and water quality responses
from the watershed. Spatial effects of the five watershed sub-basins were investigated for their
interactions on water yield, groundwater yield, potential evapotranspiration, sediment yield, and
total phosphorus yield. Model results determined that the spatial heterogeneity effects were the
greatest for the groundwater yield prediction (100%) followed by sediment yield (44%), water
yield (40%), total phosphorus yield (33%), and potential evapotranspiration (7%) from the
selected five sub-basins of the UPRW. Overall, the results indicate that the UPRW hydrology is
very sensitive to spatial heterogeneity of the watershed.
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Table 5.  Area receiving phosphorus (P) input, stream lengths, and forested wetland buffered stream
lengths of the sub-basins in the Upper Pearl River watershed.

Sub-basins Area (km2) Area receiving P (km2) Stream lengths (km) Buffered lengths (km) 

3 1,338 291 16.97 8.60 

7 1,821 717 48.31 26.18 

12 1,567 478 25.73 4.60 

22 1,527 441 19.68 15.70 

25 1,784 704 34.22 23.60 
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