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The Khabour River is one of five tributaries of Tigris River and the first river flows into Tigris River
contributing to Tigris Flow by about 2 BCM at Zakho Station.  The area of this catchment is 6,143 km 2,
of which 57% are located in Turkey and 43% in Iraq with a total length of 181 km. Khabour River is
the main source of fresh water to Duhok City, one of the major cities of Kurdistan Region.  Hydro-
meteorological data over the past several decades reveal that the catchment is experiencing increasing
variability  in  precipitation  and  stream  flow  contributing  to  more  severe  droughts  and  floods
presumably due to climate change. SWAT model was applied to capture the dynamics of the basin. The
model was calibrated at Zakho station. The performance of the model was rather satisfactory; R2 and
ENC were 0.5 and 0.51, respectively in calibration period. In validation process R2 and ENC were
nearly  consistent.  In the next  stage,  six  GCMs from CMIP3 namely, CGCM3.1/T47,  CNRM-CM3,
GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change
projections in the basin under a very high emissions scenario (A2), a medium emissions scenario (A1B)
and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100).  All GCMs
showed consistent increases in temperature and decreases in precipitation, and as expected, highest
rate for A2 and lowest rate for B1. The projected temperatures and precipitation were input to the
SWAT model to project water resources, and the model outputs were compared with the baseline period
(1980-2010), the picture that emerged depicted deteriorating water resources variability.
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INTRODUCTION

Climate change is one of the major concerns confronting Iraq affecting all sectors of life especially
water sector. Iraq is highly  vulnerable to climate change due to its aridity.  The impacts of climate
change on water resources could deleteriously affect the environment and the socio-economy of the
country,  particularly  the  agricultural  sector.  There  is  a  strong  demand  from  decision  makers  for
predictions about the potential  impacts of climate change involving the duration and magnitude of
precipitation,  which has ramifications on sustaining and managing water resources appropriately to
meet water scarcity that has become pronounced (Al-Ansari et al. 2014). Khabour tributary is one of
Tigris Tributaries and the major water resource for Duhok City, one of the major cities of Kurdistan
Region. Information on the catchment dynamics is scarce and no water resources management studies
are available (UN-ESCWA and BGR 2013). Furthermore,  water issues related to climate change in
Khabour has been never addressed within climate change analyses and climate policy construction
(Issa et al. 2014). This study aims to fill that gap. 

To capture and describe these potential issues of the basin in a meaningful way, the physics–based
Soil and Water Assessment Tool (SWAT) has been widely used for assessing climate change impacts on
hydrological processes and nonpoint source pollution at various watershed scales (Arnold et al. 1998)
was used in this study. The results of the research could make a significant contribution in providing a
better understanding of the interaction between climate change and the hydrological system. This, in
turn, will contribute towards better enabling humans adapting to the impacts of climate change and
variability on water resources in Khabour Basin.

STUDIED AREA

Khabour (Figure 1) rises from the Eastern Anatolia Region in Turkey, flows to the south crossing
Turkey-Iraqi border and then to the west through the Zakho City, finally it joins the Tigris River at a
small distance to the south. The mean annual flow of Khabur is 68m3/sec and its length is 181 km (UN-
ESCWA and BGR 2013). Khabour River drains an area of 6,143 km2, of which 43% situated in Iraq
and 57% in Turkey. The basin is highly mountainous, with various elevations ranging from 300 to 3300
m above the sea level. Many springs rise in the basin. Mean annual temperature is 10°C and mean
annual rainfall 780 mm. About 60% and 25% of precipitation including snowfall occurs in winter and
spring, respectively. In autumn and summer, 14% and 1% of precipitation falls as rain, respectively.
The flow regime of Khabour River demonstrates highly seasonal flow with peak flow occurring in May
and low seasonal flow from July to December. This is a typical near-natural nival regime, in which
winter precipitation in the form of snow and snow-melt in the spring is dominant. Approximately 46%
of the watershed is  covered by forest,  30% by Wetland-Forested and 23% of the land is  used for
agricultural activities. Up to date, no dams or regulators have been built on theKhabourRiver (UN-
ESCWA and BGR 2013). 

DESCRIPTION OF SWAT MODEL

The Soil and Water Assessment Tool (SWAT) model (Arnold et al. 1998) is a river watershed scale,
semi-distributed and physically based discrete time (daily computational time step) model for analyzing
hydrology and water quality at various watershed scales with varying soils, land use and management
conditions on a long-term basis. The model was originally developed by the United States Department
of Agriculture (USDA) and the Agricultural Research Service (ARS). SWAT system is embedded 
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Figure 1. Location of Khabour Basin

within a Geographic Information System (ArcGIS interface), in which different spatial environmental
data, including climate, soil, land cover and topographic characteristics can be integrated.

The model has two major divisions, land phase and routing phase, which are run to simulate the
hydrology  of  a  watershed.  The  land  phase  of  the  hydrological  cycle  predicts  the  hydrological
components including surface runoff, evapotranspiration,  groundwater, lateral flow, ponds, tributary
channels and return flow. The routing phase of the hydrological cycles captures the movement of water,
sediments, nutrients and organic chemicals via the channel network of the basin to the outlet. 

In the land phase of the hydrological cycle, the simulation of the hydrological cycle is based on the
water balance equation.

SW t=SW 0+∑
i=1

n

(Rday−Qsurf−Ea−W seep−Qgw )         (1)

where SWt is the final soil water content (mm), SWo is the initial soil water content on day i (mm), t is
the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface runoff
on day  i (mm), Ea is the amount of evapotranspiration on day  i  (mm),  Wseep is the amount of water
entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of return flow on
day i (mm). A brief description of some of the main components of the model is provided in this study,
more detailed descriptions can be found in (Nietsch et al. 2005).  
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The estimation of surface runoff is done through two methods; the SCS curve number procedure
(SCS 1972 in Arnold et al. 1998) and the Green and Ampt infiltration method (Green and Ampt 1911).
The SCS method has been used in this study due to non-availability of sub-daily data that is required by
the Green and Ampt infiltration method.

The SCS curve number equation is:

Qsurf=
(Rday−0.2 S)

2

(Rday+0.8S)
       (2)

where,  Qsurf is the accumulated runoff or rainfall excess (mm),  Rday is the rainfall depth for the day
(mm), S is the retention parameter (mm). 

The retention parameter differs spatially owing to various soils; land use, management and slope
within a catchment and temporally because of changes in soil water content. The retention parameter is
defined by the equation; 

S=25.4 (1000CN
−10)       (3)

where CN is the curve number for the day.

SWAT offers  two  methods  for  estimating  the  retention  parameter.  The  traditional  method  (soil
moisture  method)  allows  the  retention  parameter  to  be  varied  with  soil  profile  water  content.  An
alternative method added to SWAT 2012 is to allow the retention parameter to vary with accumulated
plant  evapotranspiration.  The soil  moisture  method predicts  too much runoff  in  shallow soils,  but
adding the calculation of daily CN value as a function of plant evapotranspiration, the value becomes
less dependent on soil storage and more dependent on antecedent climate.

When the retention parameter is to be varied with soil profile water content, the following equation
will be used, 

S=S1max∗(1− SW
[SW +exp(w 1−w2∗SW )]

)        (4)

where S is the retention parameter for a given day (mm), Smax is the maximum value that the retention
parameter can be achieved on any given day (mm),  SW is the soil water content of the entire profile
excluding the amount of water held in the profile at wilting point (mm), and  w1 and  w2 are shape
coefficients. The maximum retention parameter value, Smax, is calculated by solving equation (3), using
CN1  as shown below,

Smax=25.4( 1000CN 1

−10)        (5)

When the retention parameter differs with plant evapotranspiration, equation below is used to update
the retention parameter at the end of every day:
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S=Sprev+Eo exp(−cncoef−S prev

Smax
)−Rday−Qsurf       (6)

where Sprev is the retention parameter for the previous day (mm), Eo is the potential evapotranspiration
for the day (mm/day), cncoef is the weighting coefficient used to calculate the retention coefficient for
daily curve number calculations which depend on plant evapotranspiration, Smax is the maximum value
the retention parameter that can be achieved on any given day (mm), the Rday is the rainfall depth for the
day (mm), and surf is the surface runoff (mm). The initial value of the retention parameter is defined as
S = 0. 9Smax.

 The model estimates the volume of lateral flow depending on the variation in conductivity, slope
and soil water content. A kinematic storage model is utilized to predict lateral flow through each soil
layer. Lateral flow occurs below the surface when the water rates in a layer exceed the field capacity
after percolation. 

As  to  groundwater  simulation,  the  process  is  structured  into  two aquifers  which  are  a  shallow
aquifer (unconfined) and a deep aquifer (confined) in each watershed. The shallow aquifer contributes
to stream flow in the main channel of the watershed. 

The water balance equation for the shallow aquifer is:

aqsh ,i=aqsh ,i−1+w rchg. sh−Qgw−wrevap−wpump. sh       (7)

where aqshi is the amount of water stored in the shallow aquifer on day i (mm), aqsh,i-1 is the amount of
water stored in the shallow aquifer on day  i-1 (mm),  wrchrg.sh is the amount of recharge entering the
aquifer on day i (mm), Qgw is the groundwater flow, or base flow, into the main channel on day i (mm),
wrevap is the amount of water moving into the soil zone in response to water deficiencies on day i (mm),
and wpump,sh is the amount of water removed from the shallow aquifer by pumping on day i (mm).

The steady-state  response of groundwater  flow to recharge is  calculated by the equation below
(Hooghoudt 1940 in Arnold et al. 2005).

Qgw=
8000∗K sat

Lgw
2 ∗hwtbl      (8)

where Ksat is the hydraulic conductivity of the aquifer (mm/day), Lgw is the distance from the ridge or
sub-basin divide for the groundwater system to the main channel (m), and hwtbl is the water table height
(m).

Water that percolates into the confined aquifer is presumably contributing to stream flow outside the
watershed. Three methods are provided by SWAT model to estimate potential evapotranspiration (PET)
– the Penman-Monteith method (Monteith 1965), the Priestley-Taylor method (Priestley and Taylor
1972)  and  the  Hargreaves  method  (Hargreaves  et  al.  1985).  Water  is  routed  through  the  channel
network by applying either the variable storage routing or Muskingum river routing methods using the
daily time step. 
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 MODEL INPUT

Huge amount of input data is required by SWAT model to fulfil the tasks envisaged in this research.
Basic data requirements for modelling included digital elevation model (DEM), land use map, soil
map,  weather  data  and discharge data.  DEM was extracted from ASTER Global  Digital  Elevation
Model  (ASTERGDM)  with  a  30  meter  grid  and  1×1  degree  tiles
(http://gdem.ersdac.jspacesystems.or.jp/tile_list.jsp).  The  land  cover  map  was  obtained  from  the
European  Environment  Agency  (http://www.eea.europa.eu/data-and-maps/data/global-land-cover-
250m) with a 250 meter grid raster for the year 2000. The soil map was collected from the global soil
map of the Food and Agriculture Organization of the United Nations (1995). Weather data included
daily precipitation, 0.5 hourly precipitation, maximum and minimum temperatures obtained from the
Iraq’s Bureau of Meteorology. Monthly stream flow data was collected from the Iraqi Ministry of Water
Resources/National Water Centre.

 Model setup

In SWAT model, the watershed is subdivided into small basins based on the digital elevation model
(DEM). The land use map, soil map and slope datasets were embedded with the SWAT databases in this
study. Thereafter, the small basins are further drilled down by Hydrologic Response Units (HRUs).
HRUs are defined as packages of land that have a unique slope, soil and land use area within the
borders  of  a  small  basin.  The HRUs represent  percentages  of  a  sub-basin  area  and hence  are  not
spatially defined in the model. There must be at least one HRU in each basin. HRUs enable the user to
identify the differences in hydrologic conditions such as evapotranspiration for varied soils and land
uses. Routing of water and pollutants are predicted from the HRUs to the sub-basin level and then
through the river system to the watershed outlet.

Model calibration and evaluation

To evaluate  the  performance  of  the  SWAT model,  the  sequential  uncertainty  fitting  algorithm
application (SUFI-2) embedded in the SWAT-CUP package (Abbaspour et al.  2007) was used. The
advantages of SUFI-2 are that it combines optimization and uncertainty analysis, can handle a large
number  of  parameters  through Latin  hypercube sampling  and it  is  easy  to  apply. Furthermore,  as
compared with different techniques in connection to SWAT such as generalized likelihood uncertainty
(GLU)  estimation,  parameter  solution  (parsol),  Markov  Chain  Monte  Carlo  (MCMC),  SUFI-2
algorithm was found to obtain good prediction uncertainty ranges with a few numbers of runs. This
efficiency is of great significance when implementing complex and large-scale models (Abbaspour et
al. 2004).

The SUFI-2 first identifies the range for each parameter. After that, Latin Hypercube method is used
to generate multiple combinations among the calibration parameters. Finally, the model runs with each
combination and the obtained results are compared with observed data until the optimum objective
function is achieved. Since the uncertainty in forcing inputs (e.g. temperature,  rainfall),  conceptual
model and measured data are not avoidable in hydrological models, the SUFI-2 algorithm computes the
uncertainty of the measurements, the conceptual model and the parameters by two measures: P-factor
and R-factor. P-factor is the percentage of data covered by the 95% prediction uncertainty (PPU) which
is quantified at 2.5% and 97.5% of the cumulative distribution of an output variable obtained through
Latin Hypercube Sampling. The R-factor is the average width of the 95 PPU divided by the standard
deviation of the corresponding measured variable. In an ideal situation, P-factor tends towards 1 and R-
factor to zero. Further, SUFI-2 calculates the Coefficient of Determination (R2) and the Nasch-Sutcliff
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efficiency (ENC) (Nash and Sutcliffe 1970) to assess the goodness of fit between the measured and
simulated data. 

The ENC value is an indication of how well the plot of the observed against the simulated values fits
the 1:1 line. It can range from negative infinity (-∞) to one. The closer the value to one, the better is the
prediction, while the value of less than 0.5 indicates unsatisfactory model performance (Moriasi et al.
2007). ENC is calculated as shown below: 

ENC=1−[∑i=1
n

(Oi−Pi)
2

∑
i=1

n

(Oi−Ó)2 ]       (9)

where  Oi is the observed stream flow,  Pi is the simulated stream flow and  Ō is the mean observed
stream flow during the evaluation period. 

ENC was recommended to be used for calibration for two reasons. First, it has been adopted by
ASCE  (1993)  and  second,  Legates  and  McCabe  (1999)  recommend  it  due  to  its  straightforward
physical  interpretation  (Raghavan  et  al.  2014).  Besides,  it  has  found  wide  applications  offering
extensive information on reported values (Moriasi et al. 2007). 

SUFI-2 enables users to conduct global sensitivity analysis, which is computed based on the Latin
Hypercube and multiple regression analysis. The multiple regression equation is defined as below.

g=α+∑
i=1

m

β i∗bi     (10)

where g is the value of evaluation index for the model simulations,  α is a constant in multiple linear
regression equation,  β is a coefficient of the regression equation,  b is a parameter generated by the
Latin hypercube method and m is the number of parameters.   

The t-stat of this equation which indicates parameter sensitivity is applied to determine the relative
significance for each parameter, the more the sensitive parameter, greater is the absolute value of the t-
stat. When p-value is used, it is an indication of the significance of the sensitivity, p-value close to zero
has more significance.

General Circulation Model (GCM) inputs

Six  GCMs  from  CMIP3  namely  CGCM3.1/T47,  CNRM-CM3,  GFDL-CM2.1,  IPSLCM4,
MIROC3.2  (medres)  and  MRI  CGCM2.3.2  were  selected  for  climate  change  projections  in  the
Khabour basin under a very high emission scenario (A2), a medium emission scenario (A1B) and a low
emission  scenario  (B1)  for  two  future  periods  (2046-2064)  and  (2080-2100).  The  projected
temperatures and precipitation were then input to the SWAT model to compare water resources in the
basin with the baseline period (1980-2010). Fig. 2 provides the information for the baseline period.
BCSD method was used to downscale the GCM results (Maurer et al. 2014).
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RESULTS

Global sensitivity

An initial sensitivity analysis was applied prior to calibrating the model to examine the sensitivity of
different parameters related to stream flow (Table 1). The results show that SUFI-2 has been able to
identify the most influential parameters on the model results. In the current study, sensitivity analysis
has been carried out for 25 parameters related to stream flow (Table 1), from which 12 most sensitive
parameters have been considered (Table 2) for implementing the calibration.

Table 1. Description of input parameters of stream flow selected for model calibration. 

Group Parameter Description Unit
Soil SOL_ALB Moist soil albedo -

SOL_AWC Available water capacity mm mm-1

SOL_K Saturated hydraulic conductivity mmh-1

SOL_Z Depth to bottom of second soil layer mm
Groundwater ALPHA_BF Base flow Alpha factor days

GW_DELAY Groundwater delay days
GW_REVAP Groundwater ‘revap’ coefficient -

GWQMN Threshold depth of water in the shallow aquifer
for return flow to occur

mm H2O

REVAPMN Threshold depth of water in the shallow aquifer
for ‘revap’ to occur

mm H2O

Subbasin TLAPS Temperature laps rate °C km–1

HRU EPCO Soil evaporation compensation factor -
ESCO Plant uptake compensation factor -

CANMX Maximum canopy storage mm H2O
SLSUBBSN Average slope length m

Routing CH_N2 Manning’s n value for the main channel -
CH_K2 Effective hydraulic conductivity in main

channel alluvium
mm h–1

Management BIOMIX Biological mixing efficiency -
CN2 Initial SCS runoff curve number for moisture

condition II
-

General data
basin

SFTMP Snowfall temperature °C

SMFMN Minimum melt rate for snow during year mm H2O °C –1

day–1

SMFMX Maximum melt rate for snow during year mm H2O °C –1

day–1

TEMP Snow pack temperature lag factor -
SURLAG Surface runoff lag time days

BLAI Maximum potential leaf area index for land
cover/plant

-

SLOPE Slope -
 This table is adapted from (Arnold et al. 1998)
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Table 2. Ranking of 12 highest sensitive parameters related to stream flow in the five basins.  

Parameter Rank Initial values Fitted values
SFTMP 1 -5 – 5 3.68
CN2 2 -0.2 – 0.2 0.02
ALPHA_BF 3 0 – 1 0.182
GW_DELAY 4 30 – 450 183
SLSUBBSN 5 0 – 0.2 0.145
SOL_AWC 6 -0.2 – 0.4 0.342
CH_K2 7 5 – 130 73
GWQMN 8 0 – 2 1.23
GW_REVAP 9 0 – 0.2 0.09
SURLAG 10 0.05 – 24 16.8
ESCO.hru 11 0 – 0.2 0.067
HRU_SLP 12 0 – 0.2 0.12

SFTMP was the dominant SWAT calibration parameter for the Khabour basin. This is a reasonable
result  as  Khabour  basin is  classified  as  snow-dominated  mountainous  basin.  CN2 was the  second
influential parameter.   In most SWAT applications in different watersheds CN2 was found to be the
most sensitive parameter (Cibin et  al.  2010). ALPHA-BF was ranked as the second. This result  is
consistent with the finding of Li et al. (2009), who found that ALPHA is highly sensitive groundwater
parameter in SWAT calibration.

Calibration and validation 

The model was calibrated and validated at the solo  discharge station, Zakho station which is located
at Latitude 37° 08′ 00″ N, Longitude 42° 41′ 00″ E, near to the Khabour basin outlet. The calibration
period was ten years (1977-1986) and the validation period was three years (1987-1999). The first three
years was warm up period.  The results of flow calibration of the Zakho monitoring station showed a
good agreement between observed and simulated values (Figure 2). R2 value was 0.50 and ENC index
was 0.51. In addition, 45% of observed data was bracketed by 95 PPU (P-factor) with R-factor of 1.89.
During the validation, R2 and ENC remained nearly consistent, P- factor  increased to 0.75 and R-factor
decreased to 1.56.
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Figure 2. Calibration and validation of the SWAT model at monthly scale at Zakho station. 

Journal of Environmental Hydrology                              9                                 Volume 24  Paper 10  October  2016 



Trends in precipitation, blue water and green water in the past

Using the calibrated model, annual precipitation, blue water (summation of water yield and deep
aquifer recharge) and green water including green water storage (soil water content) were estimated
during the last three decades to identify the impacts of climate change on the water cycle components.
Blue water is the freshwater humans can access for in stream use or withdrawal. Green water does not
provide direct access to humans but sustains natural flora and rain-fed agriculture. 

The spatial distribution of precipitation in HRUs over three consecutive decades is shown in Figure
3. From the figure it appears that there is a general decreasing trend in precipitation over time. 

Figure 3. Spatial distribution of precipitation in the Khabour basin over three consecutive decades.

Spatial distribution of blue water and green water in the Khabour basin are shown in Figures 4 and
5. The spatial patterns of the blue and green water flows are largely affected by the spatial patterns of
precipitation. In addition, land cover contributes to the shaping of spatial patterns. Generally, green
water tracks blue water, where blue water  flows are high, green water flows also have a tendency to be
high. The average annual blue water and green water for the entire catchment significantly decreased
from 1980s to 2000s. It is plausible that the decreasing trends in the average annual blue water and
green  water  are  attributable  to  climate  change.  Green  water  flow stayed  nearly  consistent  due  to
hypothesis that the land cover stayed consistent through the period of (1980-2010). Table 3 provides
numerical values of relative changes. 

The calibrated model was also applied for blue water scarcity analysis. The five water stress ranks
introduced in Figure 7 follow the most widely applied water stress indicators defined by Falkenmark et
al. (1989) and Rijsberman (2006). The water stress threshold defined as 1700 m3.capita-1.year-1.  The
1700 m3.capita-1.year-1 is calculated based on estimations of water needs in the household, agricultural,
industrial and energy sectors, and the demand of the environment (Rijsberman 2006). A value equal or
greater than 1700 m3.capita-1.year-1 is considered as adequate to meet water demands.  When water
supply drops below 1000 m3.capita-1.year-1 it is referred to as water scarcity, while a value below 500
m3.capita-1. year -1 is considered as extreme scarcity. 

The water availability per capita and water stress indicators  were estimated for each of the 27 sub-
basins of the Khabour catchment using the 2.5 arcmin population map available from the Center for 
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Figure 4: Spatial distribution of blue water in the Khabour basin over three consecutive decades.

Figure 5: Spatial distribution of green water storage in the Khabour basin over three consecutive
decades.

Table 3: Relative changes in precipitation, blue water and green water in theKhabourbasin over three
decades.

    Rate of relative change in the last three decades
Water component 1990s vs 1980s 2000s vs 1990s 2000s vs 1980s
Precipitation -0.14 -0.31 -0.40
Blue water -0.22 -0.47 -0.60
Green water storage -0.12 -0.08 -0.20
Green water flow -0.04 -0.05 -0.04

Blue water scarcity indicators
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International  Earth  Science  (CIESIN)  Gridded  Population  of  the  World  (GPW,  version  3,
http://sedac.ciesin.columbia. edu/gpw) for 2005. Fig. 7 demonstrates the spatial distribution of water
resources per capita per year during the period of 1980-2010 based on the population estimates of the
year of 2005. In general, 7% of the basin located mostly in the lower part of the basin suffers blue
water scarcity (less than 500  m3/capita.year. Up to 21% of the basin area, located in the upper part of
the basin, experiences sufficient water  (more than 2 500 m3/capita.year). Thirty nine percent of the
basin experiences greater than 1700 m3/capita.year and lesser than 2500 m3/capita.year. It is clearly
seen that most of the Khabour basin has sufficient water.    

Figure 6. Water scarcity in each Khabour sub-basin captured by 1980-2010 annual average blue
water flow availability per capita per year (using population of 2005) applying the average value of the
95 PPU range.

Uncertainty and natural variation in green water storage

For the rainfed crops, the average of the months per year for the period of 1980 to 2010 where green
water storage is available (defined as >1 mm m-1) is of greatest significance (Zang et al. 2012). This is
shown in Fig. 7 (left). Up to 77% of the basin experiences 8 to 9 months (September to May) in which
green water is available .The standard deviation (SD) of the months per year without depleted soil
water is presented for the 1980–2010 period in Fig. 7 (right). The areas with a high SD located in north
east and middle of the basin show high variability in green water storage availability. This might cause
a reduction in crop yield or crop loss. Adjustment of irrigation systems and adoption of alternative
cropping practices could be recommended in these lands to sustain agriculture production.
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Figure 7. (Right) The 1980–2010 average green water and (Left) standard deviation (SD) of the
number of months per year where the green water storage (GWS) is available for usage.

The impacts of climate change on temperature and precipitation under A2, A1B, B1 emission
scenarios

Mean annual  temperature  and  precipitation  outputs  from the  six  GCMs identified  earlier  were
processed for the Khabour basin under three scenarios (A2, A1B, B1). Table 4 captures the projected
changes in mean annual temperature for two future periods (2046-2064) and (2080-2100) relative to
base period (1980-2010). All scenarios projected increases in mean temperature.  GFDL predicted the
greatest increases in temperature and MRI projected the lowest temperatures 

Table 4. GCM predicted changes in the mean annual temperature of the future under A2, A1B 
and B1 scenarios.

Periods Annual change in min  temperature (0C)
CGCM3.1/T47 CNRM-

CM3
GFDL-
CM2.1

PSLCM4 MIROC3.2 MRI
CGCM2.3.2

A2
2046-2064 2.8 2.6 2.5 2.1 2.5 1.7
2080-2100 5.3 5 5.3 4.3 4.5 3.6

A1B

2046-2064 2.5 2.3 3 2.7 2.3 2

2080-2100 4.0 3.5 4.5 3.6 4.2 3.2

B1

2046-2064 1.4 1.4 1.5 1.3 1.4 1.3

2080-2100 1.5 1.2 1.5 1.5 1.5 1.3

Table 5 captures the relative changes in precipitation for near future (2046-2064) and distant future
(2080-2100) relative to base line period (1980-2010). All scenarios projected decreases in precipitation
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for  both  periods.  GFDL-CM2.1  projected  the  highest  reduction  under  three  emission  scenarios;
however, MRI CGCM2.3.2 predicted the lowest reduction in precipitation.    

Table 5. GCM predicted changes in the mean annual precipitation of the future under A2, A1B 
and B1 scenarios.

Periods Annual change in precipitation (%)
CGCM3.1/T47 CNRM-

CM3
GFDL-
CM2.1

PSLCM4 MIROC3.2 MRI
CGCM2.3.2

A2
2046-2064 -0.09 -0.08 -0.18 -0.11 -0.12 -0.07
2080-2100 -0.22 -0.22 -0.38 -0.35 -0.28 -0.25

A1B

2046-2064 -0.07 -0.16 -0.13 -0.12 -0.16 -0.09

2080-2100 -0.17 -0.18 -0.26 -0.24 -0.23 -0.15

B1

2046-2064 0.02 -0.04 -0.07 -0.06 -0.04 -0.01

2080-2100 -0.09 -0.06 -0.15 -0.05 -0.07 -0.04

Fig. 8 shows the anomaly maps of blue water distribution (maps of percent deviation from historic
data,  1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and 2080-2100 for the
average change of multi-GCM ensemble. The A2 scenario projected the mean reduction for the whole
basin (12%) followed by A1B (11%) and then B1 (3%). In the centennial future, the reduction would
increase to 27%, 22% and 7% under A2, A1B and B1, respectively. 

The impacts of climate change on blue and green water under A2, A1B, B1 emission scenarios

Fig. 9 shows the anomaly maps of blue water distribution (maps of percent deviation from historic
data,  1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and 2080-2100 for the
average change of multi-GCM ensemble. The half-centennial projection (2046-2064) and centennial
future (2080-2100) show a decrease in blue water under all emission scenarios for the whole basin.  A2
scenario projected the mean reduction for the whole basin (26%) followed by A1B (17%) and then B1
(7%) for the period 2046 to 2064. In the centennial future, the reduction would increase to 43%, 37%
and 17% under A2, A1B and B1, respectively. Similarly, green water flows would decrease under the
three emission scenarios for the two future periods (Figure 10). 

Impacts of climate change on deep aquifer recharge 

Figure  11  captures  the  anomaly  maps  of  deep  aquifer  recharge  distribution  (maps  of  percent
deviation from historic data, 1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and
2080-2100 for the average change of multi-GCM ensemble. All scenarios in the near and far future
indicated that the basin will experience decreases in ground water recharge. The A2 scenario projected
the mean decrease for the whole basin (28%) followed by A1B (25%) and then B1 (6%) for the period
2046 to 2064. In the far future, the reduction would increase to 45%, 39% and 17% under A2, A1B and
B1.   
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Figure 8. The impacts of climate change on the precipitation of the basin based on scenarios A2,
A1B, and B1 for periods 2046-2064 and 2080–2100.
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Figure 9. The impacts of climate change on the blue water of the basin based on scenarios A2, A1B,
and B1 for periods 2046-2064 and 2080–2100.
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Figure 10. The impacts of climate change on the green water storage of the basin based on scenarios
A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
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Figure  11.  The  impacts  of  climate  change  on the  deep  aquifer  recharge  of  the  basin  based  on
scenarios A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
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Impacts of climate change on stream flow

Flow discharge is a significant hydrological element, and is significantly impacted by precipitation.
Figure 12 captures the projected effect of climate change on annual stream flow.  Using downscaled
data  from  the  Six  GCMs,  CGCM3.1/T47,  CNRM-CM3,  GFDL-CM2.1,  IPSLCM4,  MIROC3.2
(medres) and MRI CGCM2.3.2  , the streamflow showed decreases under all emission scenarios for
both time period (2046-2064 and 2080-2100). GFDL model projected a greatest reduction under the
three emissions scenarios (A2, A1B, B1) for both periods. MRI CGCM2.3.2 model, however, projected
the lowest reductions in streamflow.  

 

Figure 12. Change in annual streamflow due to changes in precipitation and temperature under  A2,
A1B  and  B1  scenarios  for  CGCM3.1/T47,  CNRM-CM3,  GFDL-CM2.1,  IPSLCM4,  MIROC3.2
(medres) and MRI CGCM2.3.2   the periods 2046-2064 and 2080-2100 expressed as a percentage of
streamflow in the base period 1980-2010.

CONCLUSION 

The  SWAT model  was  applied  to  the  Khabour  basin  at  monthly  time  steps.  The  model  was
calibrated  and  validated  at  the  solo  Zakho  discharge  station  to  simulate  the  stream  flow.  The
performance of the model was found to be rather good with R2 and ENC indices during the calibration
and validation periods. The calibrated model was used for identifying the trends of water components
in the last three decades. Precipitation, blue water, and green water flows were found to significantly
decrease from 1980 to 2010. The findings matched with observations. Next, the model was applied for
assessing the impacts of climate change in near future (2046-2064) and distant future (2080-2100)
under three emission scenarios (A2, A1B, B1) using six GCMs. All model runs under three emission
scenarios predicted that the catchment will be drier in the near and distant futures. The results of this
study  could  be  advantageous  in  detecting appropriate  water  resources  management  strategies  and
cultivation practices for the future. 
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	The Khabour River is one of five tributaries of Tigris River and the first river flows into Tigris River contributing to Tigris Flow by about 2 BCM at Zakho Station. The area of this catchment is 6,143 km2, of which 57% are located in Turkey and 43% in Iraq with a total length of 181 km. Khabour River is the main source of fresh water to Duhok City, one of the major cities of Kurdistan Region. Hydro-meteorological data over the past several decades reveal that the catchment is experiencing increasing variability in precipitation and stream flow contributing to more severe droughts and floods presumably due to climate change. SWAT model was applied to capture the dynamics of the basin. The model was calibrated at Zakho station. The performance of the model was rather satisfactory; R2 and ENC were 0.5 and 0.51, respectively in calibration period. In validation process R2 and ENC were nearly consistent. In the next stage, six GCMs from CMIP3 namely, CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the basin under a very high emissions scenario (A2), a medium emissions scenario (A1B) and a low emissions scenario (B1) for two future periods (2046-2064) and (2080-2100). All GCMs showed consistent increases in temperature and decreases in precipitation, and as expected, highest rate for A2 and lowest rate for B1. The projected temperatures and precipitation were input to the SWAT model to project water resources, and the model outputs were compared with the baseline period (1980-2010), the picture that emerged depicted deteriorating water resources variability.
	INTRODUCTION
	Climate change is one of the major concerns confronting Iraq affecting all sectors of life especially water sector. Iraq is highly vulnerable to climate change due to its aridity. The impacts of climate change on water resources could deleteriously affect the environment and the socio-economy of the country, particularly the agricultural sector. There is a strong demand from decision makers for predictions about the potential impacts of climate change involving the duration and magnitude of precipitation, which has ramifications on sustaining and managing water resources appropriately to meet water scarcity that has become pronounced (Al-Ansari et al. 2014). Khabour tributary is one of Tigris Tributaries and the major water resource for Duhok City, one of the major cities of Kurdistan Region. Information on the catchment dynamics is scarce and no water resources management studies are available (UN-ESCWA and BGR 2013). Furthermore, water issues related to climate change in Khabour has been never addressed within climate change analyses and climate policy construction (Issa et al. 2014). This study aims to fill that gap.
	To capture and describe these potential issues of the basin in a meaningful way, the physics–based Soil and Water Assessment Tool (SWAT) has been widely used for assessing climate change impacts on hydrological processes and nonpoint source pollution at various watershed scales (Arnold et al. 1998) was used in this study. The results of the research could make a significant contribution in providing a better understanding of the interaction between climate change and the hydrological system. This, in turn, will contribute towards better enabling humans adapting to the impacts of climate change and variability on water resources in Khabour Basin.
	STUDIED AREA
	Khabour (Figure 1) rises from the Eastern Anatolia Region in Turkey, flows to the south crossing Turkey-Iraqi border and then to the west through the Zakho City, finally it joins the Tigris River at a small distance to the south. The mean annual flow of Khabur is 68m3/sec and its length is 181 km (UN-ESCWA and BGR 2013). Khabour River drains an area of 6,143 km2, of which 43% situated in Iraq and 57% in Turkey. The basin is highly mountainous, with various elevations ranging from 300 to 3300 m above the sea level. Many springs rise in the basin. Mean annual temperature is 10°C and mean annual rainfall 780 mm. About 60% and 25% of precipitation including snowfall occurs in winter and spring, respectively. In autumn and summer, 14% and 1% of precipitation falls as rain, respectively. The flow regime of Khabour River demonstrates highly seasonal flow with peak flow occurring in May and low seasonal flow from July to December. This is a typical near-natural nival regime, in which winter precipitation in the form of snow and snow-melt in the spring is dominant. Approximately 46% of the watershed is covered by forest, 30% by Wetland-Forested and 23% of the land is used for agricultural activities. Up to date, no dams or regulators have been built on theKhabourRiver (UN-ESCWA and BGR 2013).
	DESCRIPTION OF SWAT MODEL
	The Soil and Water Assessment Tool (SWAT) model (Arnold et al. 1998) is a river watershed scale, semi-distributed and physically based discrete time (daily computational time step) model for analyzing hydrology and water quality at various watershed scales with varying soils, land use and management conditions on a long-term basis. The model was originally developed by the United States Department of Agriculture (USDA) and the Agricultural Research Service (ARS). SWAT system is embedded
	
	
	Figure 1. Location of Khabour Basin
	within a Geographic Information System (ArcGIS interface), in which different spatial environmental data, including climate, soil, land cover and topographic characteristics can be integrated.
	The model has two major divisions, land phase and routing phase, which are run to simulate the hydrology of a watershed. The land phase of the hydrological cycle predicts the hydrological components including surface runoff, evapotranspiration, groundwater, lateral flow, ponds, tributary channels and return flow. The routing phase of the hydrological cycles captures the movement of water, sediments, nutrients and organic chemicals via the channel network of the basin to the outlet.
	In the land phase of the hydrological cycle, the simulation of the hydrological cycle is based on the water balance equation.
	(1)
	where SWt is the final soil water content (mm), SWo is the initial soil water content on day i (mm), t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i (mm), Wseep is the amount of water entering the vadose zone from the soil profile on day i (mm), and Qgw is the amount of return flow on day i (mm). A brief description of some of the main components of the model is provided in this study, more detailed descriptions can be found in (Nietsch et al. 2005).
	The estimation of surface runoff is done through two methods; the SCS curve number procedure (SCS 1972 in Arnold et al. 1998) and the Green and Ampt infiltration method (Green and Ampt 1911). The SCS method has been used in this study due to non-availability of sub-daily data that is required by the Green and Ampt infiltration method.
	The SCS curve number equation is:
	(2)
	where, Qsurf is the accumulated runoff or rainfall excess (mm), Rday is the rainfall depth for the day (mm), S is the retention parameter (mm).
	The retention parameter differs spatially owing to various soils; land use, management and slope within a catchment and temporally because of changes in soil water content. The retention parameter is defined by the equation;
	(3)
	where CN is the curve number for the day.
	SWAT offers two methods for estimating the retention parameter. The traditional method (soil moisture method) allows the retention parameter to be varied with soil profile water content. An alternative method added to SWAT 2012 is to allow the retention parameter to vary with accumulated plant evapotranspiration. The soil moisture method predicts too much runoff in shallow soils, but adding the calculation of daily CN value as a function of plant evapotranspiration, the value becomes less dependent on soil storage and more dependent on antecedent climate.
	When the retention parameter is to be varied with soil profile water content, the following equation will be used,
	(4)
	where S is the retention parameter for a given day (mm), Smax is the maximum value that the retention parameter can be achieved on any given day (mm), SW is the soil water content of the entire profile excluding the amount of water held in the profile at wilting point (mm), and w1 and w2 are shape coefficients. The maximum retention parameter value, Smax, is calculated by solving equation (3), using CN1 as shown below,
	(5)
	When the retention parameter differs with plant evapotranspiration, equation below is used to update the retention parameter at the end of every day:
	(6)
	where Sprev is the retention parameter for the previous day (mm), Eo is the potential evapotranspiration for the day (mm/day), cncoef is the weighting coefficient used to calculate the retention coefficient for daily curve number calculations which depend on plant evapotranspiration, Smax is the maximum value the retention parameter that can be achieved on any given day (mm), the Rday is the rainfall depth for the day (mm), and surf is the surface runoff (mm). The initial value of the retention parameter is defined as S = 0. 9Smax.
	The model estimates the volume of lateral flow depending on the variation in conductivity, slope and soil water content. A kinematic storage model is utilized to predict lateral flow through each soil layer. Lateral flow occurs below the surface when the water rates in a layer exceed the field capacity after percolation.
	As to groundwater simulation, the process is structured into two aquifers which are a shallow aquifer (unconfined) and a deep aquifer (confined) in each watershed. The shallow aquifer contributes to stream flow in the main channel of the watershed.
	The water balance equation for the shallow aquifer is:
	(7)
	where aqshi is the amount of water stored in the shallow aquifer on day i (mm), aqsh,i-1 is the amount of water stored in the shallow aquifer on day i-1 (mm), wrchrg.sh is the amount of recharge entering the aquifer on day i (mm), Qgw is the groundwater flow, or base flow, into the main channel on day i (mm), wrevap is the amount of water moving into the soil zone in response to water deficiencies on day i (mm), and wpump,sh is the amount of water removed from the shallow aquifer by pumping on day i (mm).
	The steady-state response of groundwater flow to recharge is calculated by the equation below (Hooghoudt 1940 in Arnold et al. 2005).
	(8)
	where Ksat is the hydraulic conductivity of the aquifer (mm/day), Lgw is the distance from the ridge or sub-basin divide for the groundwater system to the main channel (m), and hwtbl is the water table height (m).
	Water that percolates into the confined aquifer is presumably contributing to stream flow outside the watershed. Three methods are provided by SWAT model to estimate potential evapotranspiration (PET) – the Penman-Monteith method (Monteith 1965), the Priestley-Taylor method (Priestley and Taylor 1972) and the Hargreaves method (Hargreaves et al. 1985). Water is routed through the channel network by applying either the variable storage routing or Muskingum river routing methods using the daily time step.
	MODEL INPUT
	Huge amount of input data is required by SWAT model to fulfil the tasks envisaged in this research. Basic data requirements for modelling included digital elevation model (DEM), land use map, soil map, weather data and discharge data. DEM was extracted from ASTER Global Digital Elevation Model (ASTERGDM) with a 30 meter grid and 1×1 degree tiles (http://gdem.ersdac.jspacesystems.or.jp/tile_list.jsp). The land cover map was obtained from the European Environment Agency (http://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m) with a 250 meter grid raster for the year 2000. The soil map was collected from the global soil map of the Food and Agriculture Organization of the United Nations (1995). Weather data included daily precipitation, 0.5 hourly precipitation, maximum and minimum temperatures obtained from the Iraq’s Bureau of Meteorology. Monthly stream flow data was collected from the Iraqi Ministry of Water Resources/National Water Centre.
	Model setup
	In SWAT model, the watershed is subdivided into small basins based on the digital elevation model (DEM). The land use map, soil map and slope datasets were embedded with the SWAT databases in this study. Thereafter, the small basins are further drilled down by Hydrologic Response Units (HRUs). HRUs are defined as packages of land that have a unique slope, soil and land use area within the borders of a small basin. The HRUs represent percentages of a sub-basin area and hence are not spatially defined in the model. There must be at least one HRU in each basin. HRUs enable the user to identify the differences in hydrologic conditions such as evapotranspiration for varied soils and land uses. Routing of water and pollutants are predicted from the HRUs to the sub-basin level and then through the river system to the watershed outlet.
	Model calibration and evaluation
	To evaluate the performance of the SWAT model, the sequential uncertainty fitting algorithm application (SUFI-2) embedded in the SWAT-CUP package (Abbaspour et al. 2007) was used. The advantages of SUFI-2 are that it combines optimization and uncertainty analysis, can handle a large number of parameters through Latin hypercube sampling and it is easy to apply. Furthermore, as compared with different techniques in connection to SWAT such as generalized likelihood uncertainty (GLU) estimation, parameter solution (parsol), Markov Chain Monte Carlo (MCMC), SUFI-2 algorithm was found to obtain good prediction uncertainty ranges with a few numbers of runs. This efficiency is of great significance when implementing complex and large-scale models (Abbaspour et al. 2004).
	The SUFI-2 first identifies the range for each parameter. After that, Latin Hypercube method is used to generate multiple combinations among the calibration parameters. Finally, the model runs with each combination and the obtained results are compared with observed data until the optimum objective function is achieved. Since the uncertainty in forcing inputs (e.g. temperature, rainfall), conceptual model and measured data are not avoidable in hydrological models, the SUFI-2 algorithm computes the uncertainty of the measurements, the conceptual model and the parameters by two measures: P-factor and R-factor. P-factor is the percentage of data covered by the 95% prediction uncertainty (PPU) which is quantified at 2.5% and 97.5% of the cumulative distribution of an output variable obtained through Latin Hypercube Sampling. The R-factor is the average width of the 95 PPU divided by the standard deviation of the corresponding measured variable. In an ideal situation, P-factor tends towards 1 and R-factor to zero. Further, SUFI-2 calculates the Coefficient of Determination (R2) and the Nasch-Sutcliff efficiency (ENC) (Nash and Sutcliffe 1970) to assess the goodness of fit between the measured and simulated data.
	The ENC value is an indication of how well the plot of the observed against the simulated values fits the 1:1 line. It can range from negative infinity (-∞) to one. The closer the value to one, the better is the prediction, while the value of less than 0.5 indicates unsatisfactory model performance (Moriasi et al. 2007). ENC is calculated as shown below:
	(9)
	where Oi is the observed stream flow, Pi is the simulated stream flow and Ō is the mean observed stream flow during the evaluation period.
	ENC was recommended to be used for calibration for two reasons. First, it has been adopted by ASCE (1993) and second, Legates and McCabe (1999) recommend it due to its straightforward physical interpretation (Raghavan et al. 2014). Besides, it has found wide applications offering extensive information on reported values (Moriasi et al. 2007).
	SUFI-2 enables users to conduct global sensitivity analysis, which is computed based on the Latin Hypercube and multiple regression analysis. The multiple regression equation is defined as below.
	(10)
	where g is the value of evaluation index for the model simulations, α is a constant in multiple linear regression equation, β is a coefficient of the regression equation, b is a parameter generated by the Latin hypercube method and m is the number of parameters.
	The t-stat of this equation which indicates parameter sensitivity is applied to determine the relative significance for each parameter, the more the sensitive parameter, greater is the absolute value of the t-stat. When p-value is used, it is an indication of the significance of the sensitivity, p-value close to zero has more significance.
	General Circulation Model (GCM) inputs
	Six GCMs from CMIP3 namely CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 were selected for climate change projections in the Khabour basin under a very high emission scenario (A2), a medium emission scenario (A1B) and a low emission scenario (B1) for two future periods (2046-2064) and (2080-2100). The projected temperatures and precipitation were then input to the SWAT model to compare water resources in the basin with the baseline period (1980-2010). Fig. 2 provides the information for the baseline period. BCSD method was used to downscale the GCM results (Maurer et al. 2014).
	RESULTS
	Global sensitivity
	An initial sensitivity analysis was applied prior to calibrating the model to examine the sensitivity of different parameters related to stream flow (Table 1). The results show that SUFI-2 has been able to identify the most influential parameters on the model results. In the current study, sensitivity analysis has been carried out for 25 parameters related to stream flow (Table 1), from which 12 most sensitive parameters have been considered (Table 2) for implementing the calibration.
	Table 1. Description of input parameters of stream flow selected for model calibration.
	Group
	Parameter
	Description
	Unit
	Soil
	SOL_ALB
	Moist soil albedo
	-
	SOL_AWC
	Available water capacity
	mm mm-1
	SOL_K
	Saturated hydraulic conductivity
	mmh-1
	SOL_Z
	Depth to bottom of second soil layer
	mm
	Groundwater
	ALPHA_BF
	Base flow Alpha factor
	days
	GW_DELAY
	Groundwater delay
	days
	GW_REVAP
	Groundwater ‘revap’ coefficient
	-
	GWQMN
	Threshold depth of water in the shallow aquifer for return flow to occur
	mm H2O
	REVAPMN
	Threshold depth of water in the shallow aquifer for ‘revap’ to occur
	mm H2O
	Subbasin
	TLAPS
	Temperature laps rate
	°C km–1
	HRU
	EPCO
	Soil evaporation compensation factor
	-
	ESCO
	Plant uptake compensation factor
	-
	CANMX
	Maximum canopy storage
	mm H2O
	SLSUBBSN
	Average slope length
	m
	Routing
	CH_N2
	Manning’s n value for the main channel
	-
	CH_K2
	Effective hydraulic conductivity in main channel alluvium
	mm h–1
	Management
	BIOMIX
	Biological mixing efficiency
	-
	CN2
	Initial SCS runoff curve number for moisture condition II
	-
	General data basin
	SFTMP
	Snowfall temperature
	°C
	SMFMN
	Minimum melt rate for snow during year
	mm H2O °C –1 day–1
	SMFMX
	Maximum melt rate for snow during year
	mm H2O °C –1 day–1
	TEMP
	Snow pack temperature lag factor
	-
	SURLAG
	Surface runoff lag time
	days
	BLAI
	Maximum potential leaf area index for land cover/plant
	-
	SLOPE
	Slope
	-
	This table is adapted from (Arnold et al. 1998)
	Table 2. Ranking of 12 highest sensitive parameters related to stream flow in the five basins.
	Parameter
	Rank
	Initial values
	Fitted values
	SFTMP
	1
	-5 – 5
	3.68
	CN2
	2
	-0.2 – 0.2
	0.02
	ALPHA_BF
	3
	0 – 1
	0.182
	GW_DELAY
	4
	30 – 450
	183
	SLSUBBSN
	5
	0 – 0.2
	0.145
	SOL_AWC
	6
	-0.2 – 0.4
	0.342
	CH_K2
	7
	5 – 130
	73
	GWQMN
	8
	0 – 2
	1.23
	GW_REVAP
	9
	0 – 0.2
	0.09
	SURLAG
	10
	0.05 – 24
	16.8
	ESCO.hru
	11
	0 – 0.2
	0.067
	HRU_SLP
	12
	0 – 0.2
	0.12
	SFTMP was the dominant SWAT calibration parameter for the Khabour basin. This is a reasonable result as Khabour basin is classified as snow-dominated mountainous basin. CN2 was the second influential parameter. In most SWAT applications in different watersheds CN2 was found to be the most sensitive parameter (Cibin et al. 2010). ALPHA-BF was ranked as the second. This result is consistent with the finding of Li et al. (2009), who found that ALPHA is highly sensitive groundwater parameter in SWAT calibration.
	Calibration and validation
	The model was calibrated and validated at the solo discharge station, Zakho station which is located at Latitude 37° 08′ 00″ N, Longitude 42° 41′ 00″ E, near to the Khabour basin outlet. The calibration period was ten years (1977-1986) and the validation period was three years (1987-1999). The first three years was warm up period. The results of flow calibration of the Zakho monitoring station showed a good agreement between observed and simulated values (Figure 2). R2 value was 0.50 and ENC index was 0.51. In addition, 45% of observed data was bracketed by 95 PPU (P-factor) with R-factor of 1.89. During the validation, R2 and ENC remained nearly consistent, P- factor increased to 0.75 and R-factor decreased to 1.56.
	
	Figure 2. Calibration and validation of the SWAT model at monthly scale at Zakho station.
	Trends in precipitation, blue water and green water in the past
	Using the calibrated model, annual precipitation, blue water (summation of water yield and deep aquifer recharge) and green water including green water storage (soil water content) were estimated during the last three decades to identify the impacts of climate change on the water cycle components. Blue water is the freshwater humans can access for in stream use or withdrawal. Green water does not provide direct access to humans but sustains natural flora and rain-fed agriculture.
	The spatial distribution of precipitation in HRUs over three consecutive decades is shown in Figure 3. From the figure it appears that there is a general decreasing trend in precipitation over time.
	
	Figure 3. Spatial distribution of precipitation in the Khabour basin over three consecutive decades.
	Spatial distribution of blue water and green water in the Khabour basin are shown in Figures 4 and 5. The spatial patterns of the blue and green water flows are largely affected by the spatial patterns of precipitation. In addition, land cover contributes to the shaping of spatial patterns. Generally, green water tracks blue water, where blue water flows are high, green water flows also have a tendency to be high. The average annual blue water and green water for the entire catchment significantly decreased from 1980s to 2000s. It is plausible that the decreasing trends in the average annual blue water and green water are attributable to climate change. Green water flow stayed nearly consistent due to hypothesis that the land cover stayed consistent through the period of (1980-2010). Table 3 provides numerical values of relative changes.
	The calibrated model was also applied for blue water scarcity analysis. The five water stress ranks introduced in Figure 7 follow the most widely applied water stress indicators defined by Falkenmark et al. (1989) and Rijsberman (2006). The water stress threshold defined as 1700 m3.capita-1.year-1. The 1700 m3.capita-1.year-1 is calculated based on estimations of water needs in the household, agricultural, industrial and energy sectors, and the demand of the environment (Rijsberman 2006). A value equal or greater than 1700 m3.capita-1.year-1 is considered as adequate to meet water demands. When water supply drops below 1000 m3.capita-1.year-1 it is referred to as water scarcity, while a value below 500 m3.capita-1. year -1 is considered as extreme scarcity.
	The water availability per capita and water stress indicators were estimated for each of the 27 sub-basins of the Khabour catchment using the 2.5 arcmin population map available from the Center for
	
	Figure 4: Spatial distribution of blue water in the Khabour basin over three consecutive decades.
	
	Figure 5: Spatial distribution of green water storage in the Khabour basin over three consecutive decades.
	Table 3: Relative changes in precipitation, blue water and green water in theKhabourbasin over three decades.
	Rate of relative change in the last three decades
	Water component
	1990s vs 1980s
	2000s vs 1990s
	2000s vs 1980s
	Precipitation
	-0.14
	-0.31
	-0.40
	Blue water
	-0.22
	-0.47
	-0.60
	Green water storage
	-0.12
	-0.08
	-0.20
	Green water flow
	-0.04
	-0.05
	-0.04
	Blue water scarcity indicators
	International Earth Science (CIESIN) Gridded Population of the World (GPW, version 3, http://sedac.ciesin.columbia. edu/gpw) for 2005. Fig. 7 demonstrates the spatial distribution of water resources per capita per year during the period of 1980-2010 based on the population estimates of the year of 2005. In general, 7% of the basin located mostly in the lower part of the basin suffers blue water scarcity (less than 500 m3/capita.year. Up to 21% of the basin area, located in the upper part of the basin, experiences sufficient water (more than 2 500 m3/capita.year). Thirty nine percent of the basin experiences greater than 1700 m3/capita.year and lesser than 2500 m3/capita.year. It is clearly seen that most of the Khabour basin has sufficient water.
	
	Figure 6. Water scarcity in each Khabour sub-basin captured by 1980-2010 annual average blue water flow availability per capita per year (using population of 2005) applying the average value of the 95 PPU range.
	Uncertainty and natural variation in green water storage
	For the rainfed crops, the average of the months per year for the period of 1980 to 2010 where green water storage is available (defined as >1 mm m-1) is of greatest significance (Zang et al. 2012). This is shown in Fig. 7 (left). Up to 77% of the basin experiences 8 to 9 months (September to May) in which green water is available .The standard deviation (SD) of the months per year without depleted soil water is presented for the 1980–2010 period in Fig. 7 (right). The areas with a high SD located in north east and middle of the basin show high variability in green water storage availability. This might cause a reduction in crop yield or crop loss. Adjustment of irrigation systems and adoption of alternative cropping practices could be recommended in these lands to sustain agriculture production.
	
	Figure 7. (Right) The 1980–2010 average green water and (Left) standard deviation (SD) of the number of months per year where the green water storage (GWS) is available for usage.
	The impacts of climate change on temperature and precipitation under A2, A1B, B1 emission scenarios
	Mean annual temperature and precipitation outputs from the six GCMs identified earlier were processed for the Khabour basin under three scenarios (A2, A1B, B1). Table 4 captures the projected changes in mean annual temperature for two future periods (2046-2064) and (2080-2100) relative to base period (1980-2010). All scenarios projected increases in mean temperature. GFDL predicted the greatest increases in temperature and MRI projected the lowest temperatures
	Table 4. GCM predicted changes in the mean annual temperature of the future under A2, A1B and B1 scenarios.
	Periods
	Annual change in min temperature (0C)
	CGCM3.1/T47
	CNRM-CM3
	GFDL-CM2.1
	PSLCM4
	MIROC3.2
	MRI CGCM2.3.2
	A2
	2046-2064
	2.8
	2.6
	2.5
	2.1
	2.5
	1.7
	2080-2100
	5.3
	5
	5.3
	4.3
	4.5
	3.6
	A1B
	2046-2064
	2.5
	2.3
	3
	2.7
	2.3
	2
	2080-2100
	4.0
	3.5
	4.5
	3.6
	4.2
	3.2
	B1
	2046-2064
	1.4
	1.4
	1.5
	1.3
	1.4
	1.3
	2080-2100
	1.5
	1.2
	1.5
	1.5
	1.5
	1.3
	Table 5 captures the relative changes in precipitation for near future (2046-2064) and distant future (2080-2100) relative to base line period (1980-2010). All scenarios projected decreases in precipitation for both periods. GFDL-CM2.1 projected the highest reduction under three emission scenarios; however, MRI CGCM2.3.2 predicted the lowest reduction in precipitation.
	Table 5. GCM predicted changes in the mean annual precipitation of the future under A2, A1B and B1 scenarios.
	Periods
	Annual change in precipitation (%)
	CGCM3.1/T47
	CNRM-CM3
	GFDL-CM2.1
	PSLCM4
	MIROC3.2
	MRI CGCM2.3.2
	A2
	2046-2064
	-0.09
	-0.08
	-0.18
	-0.11
	-0.12
	-0.07
	2080-2100
	-0.22
	-0.22
	-0.38
	-0.35
	-0.28
	-0.25
	A1B
	2046-2064
	-0.07
	-0.16
	-0.13
	-0.12
	-0.16
	-0.09
	2080-2100
	-0.17
	-0.18
	-0.26
	-0.24
	-0.23
	-0.15
	B1
	2046-2064
	0.02
	-0.04
	-0.07
	-0.06
	-0.04
	-0.01
	2080-2100
	-0.09
	-0.06
	-0.15
	-0.05
	-0.07
	-0.04
	Fig. 8 shows the anomaly maps of blue water distribution (maps of percent deviation from historic data, 1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and 2080-2100 for the average change of multi-GCM ensemble. The A2 scenario projected the mean reduction for the whole basin (12%) followed by A1B (11%) and then B1 (3%). In the centennial future, the reduction would increase to 27%, 22% and 7% under A2, A1B and B1, respectively.
	The impacts of climate change on blue and green water under A2, A1B, B1 emission scenarios
	Fig. 9 shows the anomaly maps of blue water distribution (maps of percent deviation from historic data, 1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and 2080-2100 for the average change of multi-GCM ensemble. The half-centennial projection (2046-2064) and centennial future (2080-2100) show a decrease in blue water under all emission scenarios for the whole basin. A2 scenario projected the mean reduction for the whole basin (26%) followed by A1B (17%) and then B1 (7%) for the period 2046 to 2064. In the centennial future, the reduction would increase to 43%, 37% and 17% under A2, A1B and B1, respectively. Similarly, green water flows would decrease under the three emission scenarios for the two future periods (Figure 10).
	Impacts of climate change on deep aquifer recharge
	Figure 11 captures the anomaly maps of deep aquifer recharge distribution (maps of percent deviation from historic data, 1980-2010) for A2, A1B and B1 scenarios for the periods 2046-2064 and 2080-2100 for the average change of multi-GCM ensemble. All scenarios in the near and far future indicated that the basin will experience decreases in ground water recharge. The A2 scenario projected the mean decrease for the whole basin (28%) followed by A1B (25%) and then B1 (6%) for the period 2046 to 2064. In the far future, the reduction would increase to 45%, 39% and 17% under A2, A1B and B1.
	
	Figure 8. The impacts of climate change on the precipitation of the basin based on scenarios A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
	
	Figure 9. The impacts of climate change on the blue water of the basin based on scenarios A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
	
	Figure 10. The impacts of climate change on the green water storage of the basin based on scenarios A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
	
	Figure 11. The impacts of climate change on the deep aquifer recharge of the basin based on scenarios A2, A1B, and B1 for periods 2046-2064 and 2080–2100.
	Impacts of climate change on stream flow
	Flow discharge is a significant hydrological element, and is significantly impacted by precipitation. Figure 12 captures the projected effect of climate change on annual stream flow. Using downscaled data from the Six GCMs, CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 , the streamflow showed decreases under all emission scenarios for both time period (2046-2064 and 2080-2100). GFDL model projected a greatest reduction under the three emissions scenarios (A2, A1B, B1) for both periods. MRI CGCM2.3.2 model, however, projected the lowest reductions in streamflow.
	
	
	Figure 12. Change in annual streamflow due to changes in precipitation and temperature under A2, A1B and B1 scenarios for CGCM3.1/T47, CNRM-CM3, GFDL-CM2.1, IPSLCM4, MIROC3.2 (medres) and MRI CGCM2.3.2 the periods 2046-2064 and 2080-2100 expressed as a percentage of streamflow in the base period 1980-2010.
	CONCLUSION
	The SWAT model was applied to the Khabour basin at monthly time steps. The model was calibrated and validated at the solo Zakho discharge station to simulate the stream flow. The performance of the model was found to be rather good with R2 and ENC indices during the calibration and validation periods. The calibrated model was used for identifying the trends of water components in the last three decades. Precipitation, blue water, and green water flows were found to significantly decrease from 1980 to 2010. The findings matched with observations. Next, the model was applied for assessing the impacts of climate change in near future (2046-2064) and distant future (2080-2100) under three emission scenarios (A2, A1B, B1) using six GCMs. All model runs under three emission scenarios predicted that the catchment will be drier in the near and distant futures. The results of this study could be advantageous in detecting appropriate water resources management strategies and cultivation practices for the future.
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