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Artificial Neural Network (ANN) architecture and transfer functions had become as essential as the
network training algorithm. This study presents the optimization of neural network architecture that
were driven by the biological cell division architectures together with products of two window type
localized sigmoidal (biradial) transfer functions on Oyun River modelling to determine their suitability
for rainfall-riverflow modelling. Hydro-meteorological data used for the model study includes seasonal
river discharge and rainfall values. Two ANN models with three different hidden layers each for mitosis
and meiosis feed-forward architecture were developed. The ANN1 models with Mitosis Feed-Forward
Neural Network Architecture (MiFFNNA) has R2 values ranged from 80.07% to 96.74% and 76.12% to
92.40% for model calibration and validation while the MSE and RMSE values ranged from 0.040 to
0.560 and 0.190 m3/s to 0.750 m3/s respectively. The ANN2 models with Meiosis Feed-Forward Neural
Network  Architecture (MeFFNNA)  has  R2 values  ranged  from 92.68% to  99.57% and  89.34% to
95.45% for model calibration and validation while the MSE and RMSE values ranged from 0.468 to
0.024 and 0.698 m3/s to 0.154 m3/s respectively.  The results revealed that the ANN models using
meiosis feed-forward architecture and window type sigmoidal transfer functions is simulate better and
promising to be a good approximator for rainfall-riverflow modelling. Further combination of new
transfer functions with the biologically inspired neural network architecture and their application to
hydrological modelling should be encouraged.
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INTRODUCTION

Rainfall-riverflow processes account for one aspect of hydrologic cycle that is characterized by a
continuous movement of water  leaving the earth’s surface and eventually  returning in the form of
precipitation.  Hydrologic  modelling  is  a  prerequisite  for  operational  flood  risk  management
(Schumann, 2011). Hydrologic modelling typically relate the known input (hydro-meteorological) to
the unknown output (riverflow). 

 Recently, artificial neural network has become a powerful tool in the hands of hydrologists for
hydrologic modelling, flood forecasting, etc. 

Artificial Neural Network (ANN) has been successfully applied across an extraordinary application
domains (Varoonchotikul, 2003). However, knowledge regarding artificial neural network modelling
using biologically inspired architecture and new transfer functions  remains highly pertinent  as this
study intends to shed more light on the potential of a biologically inspired architecture and new transfer
function that is capable and flexible enough of approximating feature space with small adaptive weight.

Karim (2009) demonstrated ANN’s ability as a universal approximator when applied to complex
systems that may be poorly described or understood using mathematical equations. Features that makes
artificial  neural  network  a  better  modelling  tool  includes  its  ability  to  solve  problems where  it  is
effectively impossible to get primary data as in the case of groundwater chemistry (Gumrah  et al.,
2000), where processes are highly non-linear and spatially and temporally variant (Islam and Kothari,
2000), artificial neural network handles incomplete, noisy and ambiguous data.

Smith (2001) describes neural network as “a form of multiprocessor computer system” with simple
processing neurons, a high degree of interconnection, simple scalar messages and Adaptive interaction
between elements. 

Adaptive systems of the Artificial Neural Network (ANN) (Duch and Jankowski, 1999) type were
initially motivated by the parallel processing capabilities of the biological brains, however, studies have
shown that the processing elements and the architectures used in artificial neural networks have little in
common with biological architectures. Expert’s holds the opinion that neural network architecture and
transfer  functions  that  would  fully  behave  like  the  biological  systems  would  approximate  better
functions  with  minimal  inputs  and  computational  cost.  Form l990’s scientist  have  been  trying  to
develop a neural network architecture within the domain of multilayer perceptron that would be fully
biologically inspired. A breakthrough in this would be a great contribution in the world of artificial
intelligent. In view of the above, this study developed neural network models using neural network
architecture that are inspired by the biological cell division structures, window type localized sigmoidal
transfer function and c3sep training algorithm.

Artificial neural network transfer functions determine the way signals are processed by the network
individual neurons. Also, transfer function enables the tessellation of the parameter space in the most
flexible  ways using the lowest  number of  adaptive  weight.  There  are  numerous transfer  functions
among which are sigmoidal transfer function, hence, sigmoidal transfer functions are more frequently
used in  hydrologic  modelling  but  is  not  flexible  enough to  describe  an  arbitrarily  shaped density
distributions of the multi-dimensional input space with small adaptive weights (Pallav, 2003). 

The  objectives  of  this  study was  to  optimize  and  apply  a  neural  network  architecture  that  are
inspired by the biological cell division architectures and a window type localized sigmoidal (biradial)
arbitrarily shaped density distributions of the multidimensional input vector on Oyun River with a view
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of establishing their effects on rainfall-riverflow modelling using some hydro-meteorological inputs.
The results  obtained from this  study will  provide  large-scale  information  on the development  and
application of the biologically inspired neural network architecture and new transfer functions that will
serves computational cost and are quite flexible enough to describe an of establishing their effects on
rainfall-riverflow modelling using some hydro-meteorological inputs. The results obtained from this
study will  provide  large-scale  information  on the development  and application  of  the  biologically
inspired neural network architecture and new transfer functions to rainfall-riverflow modelling and also
will serve as a guide on integrated land and water resources modelling.

HYDROLOGICAL MODELLING OF OYUN RIVER

Artificial neural networks were driven by the highly interconnected parallel processing capabilities
of the biological brains to approximate unknown function from the space of inputs X to the space of
outputs Y = FW(X). 

The  performance  of  a  trained  neural  network  depends  largely  on  the  network  architecture,  the
transfer functions and the learning algorithm. From the statistical point of view, an adaptive systems
should approximate the density of joint probability  p(X;Y) or the posterior probability  p(Y;X) of the
input-output values. Recent emphasis on the application of neural network for hydrologic modelling are
commonly based on the network learning algorithms forgetting the great importance of the network
architectures and transfer functions. 

The neural network architectures as applied in hydrologic modelling before now are selected on the
basis  of the developer’s knowledge or by trial  and error methods.  However, this  study considered
creating  a  neural  network  architecture  that  are  driven by the  biological  processes  of  cell  division
architecture which will serve computational cost while offering a better simulation. Studies has shown
that Islam et al. (2014) optimized a neural network architecture using a genetic algorithm for electrical
load forecasting.

There are two functions that determine the way signals are been processed by network neurons.
These include the activation function I(x) which determines the total signal a neuron receives and the
output function o(I), which determine neuron’s signal processing. These two functions put together
determine the values of the network outgoing signals. The combination of the activation and the output
functions  offers  the  transfer  function  o(I(x)).  The  transfer  function  is  however  defined  by the  N-
dimensional input space. The transfer functions can be local if its values are significantly different from
zero in a finite area of the input space; otherwise the function is non-local. 

Before now the use of sigmoidal transfer functions had become popular among hydrologists when
solving hydrologic problems, this may be due to its commonly believed that the activity of biological
neurons follows such sigmoidal transfer function and also it is continuously differentiable. Neither the
sigmoidal or Gaussian transfer functions that are commonly used for hydrologic modelling is flexible
enough to describe an arbitrarily shaped decision borders in multi-dimensional input space using a
small  number  of  adaptive  weight.  Nevertheless,  no  study have  shed more  light  or  investigate  the
combination and use of new transfer functions in rainfall-riverflow modelling. Thus, this study tends to
show the potential hidden in the use of biologically inspired neural network architecture and a new
transfer function (biradial) for rainfall-riverflow modelling.
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RESEARCH METHODOLOGY

Study Area and Data Collection

The study area for the application of the optimized neural network architecture and the new transfer
function, Oyun River, lies in the sub-humid climatic zone. Oyun River is about 20 km to Ilorin the
Kwara  State  capital.  It  has  an  estimated  terrain  elevation  of  370  m above  sea  level  and  lies  on
Longitudes 4o30’ East and Latitude 8o26’N (Awu et al., 2016).  Rain normally starts falling in April and
stop late October, with June and September recording the highest rainfall values while the dry season
lasts from November to March. The mean annual rainfall values of the study area is about 1700 mm
while the mean monthly maximum and minimum temperature values in the basin are 31oC and 29oC
respectively with the highest temperature values recorded in the months of February through April. The
potential evapo-transpiration of the area is between 1500 mm to 1700 mm per annum (Manta  et al.,
2010). Figure 1 shows the catchment area of Oyun river basin enclosed within the thick black. 

Figure 1: Catchment Area of Oyun River (Awu et al., 2016)

Oyun River catchment is a relatively small catchment with elongated narrow shape and non-steep
slope  of  830  km2,  0.57%,  0.46  and  0.35  for  basin  area,  slope,  elongation  and  circulatory  ratio
respectively, which contributed to relatively slower draining of water into the river (Awu et al., 2016).
The application of the biologically inspired neural network architecture and new transfer function on
rainfall-riverflow modelling was based on the hydro-meteorological data collected from Meteorological
Unit  of  the  Land  and  Water  Engineering  Department  of  the  National  Centre  for  Agricultural
Mechanization (NCAM), Ilorin.  NCAM is located at  km 20 Ilorin-Lokoja Highway, Ilorin,  Kwara
State, Nigeria. 

The hydro-meteorological data collected includes seasonal river discharge and rainfall values. The
hydro-meteorological data were divided into two sets: the calibration set and the validation set. The
calibration set was based on a historical data consisting of 80% of the total data while the validation set
was based on futuristic data consisting of 20% of the total data (5-fold cross validation method was
used). The main reason of dividing the data into three sets is to avoid overfitting the model. The neural
network used in this study is based on code I adapted from David Miller's C++ neural network tutorial
(http://www.millermattson.com/dave/?p=54) into visual basic for better understanding.

Neural Network Architecture Driven by Biological Cell Division Architectures

Different  neural  network  architectural  approaches  may  be  used  to  search  for  best  system
approximation. Before now, the architectures used in artificial neural networks have little in common
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with  biological  structures  and  could  be  responsible  for  yet-to-breakthrough  in  a  neural  network
development that behave exactly like biological counterpart. Neural network architecture can be in the
form of  feed-forward  or  recurrent  architecture  that  consist  several  processing  elements  known as
neurons  that  are  arranged  in  layer  by  layer  basis.  In  this  study  a  feed-forward  neural  network
architecture that was driven by the biological cell division architectures was considered.

Typically, there are two types of biological cell division architectures namely: mitosis and meiosis
cell division architectures. Mitosis is a form of eukaryotic cell division that produces two daughter cells
whereas meiosis produces four daughter cells as shown in Figure 2.

 

Figure 2: Biological Mitosis and Meiosis Cell Division Architectures (source: 
http://bio1510.biology.gatech.edu)

Figure 3: Schematic Diagram of a Mitosis Feed-Forward Neural Network Architecture (MiFFNNA) 
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Adopting  the  cell  divisional  architectures  into  a  feed-forward  architectures  having  two  input
parameters, firstly into mitosis structure and secondly into meiosis structure (Figures 3 and 4). 

Figure  4:  Schematic  Diagram  of  a  Meiosis  Feed-Forward  Neural  Network  Architecture
(MeFFNNA) 

The processing of a single neuron is shown in Figure 5.

Figure 5: Activation of a single neuron (Modified from Debes et al., 2005)

In Mitosis Feed-Forward Neural Network Architecture (MiFFNNA), every neuron in the preceding
layer is accountable for two neurons in the succeeding layer while in Meiosis Feed-Forward Neural
Network architecture (MeFFNNA), every neuron in the preceding layer is accountable for four neurons
in  the  succeeding layer  respectively. The signal  processing  in  neural  network  starts  from the  first
hidden layer.
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New Transfer Functions

The activation and output functions are the two functions when combined will give network transfer
functions. The sigmoidal activation function shown in Equation 1 (Debes et al., 2005), is used in neural
network models not only because of their biological motivations, but due to their contours of constant
value I(x) = const that are defined by hyperplanes. 

I i (x )=∑
j=0

N

W ij X j(1)     (1)

where  Ii is the total activation function,  Wij is the connection strength and  Xj is the neuron signals.
Statistically,  the  activation  functions  are  classified  into  inner  products  as  a  method  based  on
discrimination using hyperplanes for tessellation of the input space and the distance based methods on
clusterization in which similarities are calculated using some kind of a distance measure as shown in
Equations 2 and 3 (Duch and Jankowski, 1999). 

Inner product activation function: I ( x; w )∝wT . x       (2)

Distance based activation function: I (x ; t )∝‖x−t‖      (3)

Before now, studies have shown that researchers uses either the inner product or distance based
activation functions  as  a  stand-alone activation  function in  their  neuron processing,  but  this  study
considered using a new activation function that was driven from linear combination of the final vector
components  of  the  inner  product  and  the  distance  based activation  function  to  represent  complex
decision borders as shown in Equation 4 (Figure 6)

I i∝wi x i+‖x i−t i‖      (4)

Figure 6: Taxonomy of activation function (Source: Duch and Jankowski, 1999) 

Likewise,  the  output  functions  of  sigmoidal  type  (Equation  8)  are  not  only  natural  from  the
statistical point of view but are also a good squashing functions for unbounded activation. Sigmoidal
output functions have non-local behavior. Hence, this study considered the use of a products window
type transfer function (new transfer function) and the adoption of a new algorithm “c3sep algorithm”
proposed  by  Growchoski  et.al (2008)  for  rainfall-riverflow  modelling.  The  window  type  transfer
function  (new  transfer  function)  was  based  on  arithmetic  operation  functions  that  don’t  have
exponential functions, this will make the neuron processing faster and save computational cost. Since
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calculation  of  exponents  in  logistic  output  function  is  much  slower  than  the  simple  arithmetic
operations other functions of sigmoidal shape such as window type transfer function are hereby used to
speed up computations.

However, the new transfer function (Equation 7) used in this study is a products of two simple
window type localized sigmoidal functions (Equation 5).

 δ (x)(1−δ (x ))       (5)

After normalization the form becomes Equation (6)

δ (x+b )−δ (x−b)
δ (b )−δ (−b)

      (6)

Growchoski  et.al (2007) uses the window type localized sigmoidal functions to train his  neural
network using traditional error minimization algorithm. He found out that the new transfer functions is
flexible, producing decision regions of arbitrary shapes for approximations. The general form of the
window type localized sigmoidal functions is shown in Equation 7 (Growchoski et.al (2008). 

G (x ; t ,b , s )=∏
i=1

B

δ (esi . ( x i−t i+eb i) )(1−δ (esi . ( x i−t i−eb i) ))      (7)

where: δ (x )= 1

(1+e−x)
     (8)

The first  sigmoidal factor  in  the product  is  growing for increasing input  xi while the second is
decreasing, localizing the function around ti. Shape adaptation of the density Gi (x ; t ,b , s ) is possible

by shifting centers  t,  rescaling  b and  s.  Exponentials esi and ebi are used instead of  si and  bi to

prevent oscillations during learning procedure. Figures 7, 8 and 9 are schematic diagrams of sigmoidal
transfer functions and products of window type localized sigmoidal functions (new transfer function).
The products of logistic sigmoidal functions is known as biradial transfer function.

Figure 7. Sigmoidal transfer function (Source: Duch and Jankowski, 1999).
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Figure 8. Window type transfer function (New transfer function) (Source: Duch and Jankowski,
1999).

Figure 9. Sigmoidal transfer function fitted (Debes et al., 2005)

Application  of  the  Optimized  Neural  Network  Architecture  and  New  Transfer  Functions  to
Rainfall-Riverflow Modelling 

This study proposed and apply optimized neural network architecture that are driven by biological
cell division structures and window type localized sigmoidal transfer functions (new transfer function)
on rainfall-riverflow modelling.  The neural  network used c3sep training algorithm as  proposed by
Growchoski  et  al.  (20108).  They  were  applied  to  a  feed-forward  multilayer  perceptron  (FFMLP)
network for rainfall-riverflow modelling of Oyun River catchment using the seasonal river discharge
and rainfall  values that had occurred earlier  at  times t-n. A feed-forward multilayer perceptron is  a
structure  of  a  neural  network  that  has  being  proven  to  be  the  best  neural  network  structure  for
hydrological modelling (Shamseldin, 2010). In multilayer perceptron, there exists between the input
and output layers, the hidden layer. There can be one or more hidden layers with many neurons that can
be  varied  to  adapt  to  the  complexity  of  the  relationships  between  input  and  output  variables.
Information is transmitted through the connections between neurons in layer-by-layers basis with the
aid  of  connections  called  synaptic  weights  (Awu  et  al., 2016).  The  input  layer  receives  input
information and feed-forward same through the output layer which produces output information. The
number of neurons in the input layer and the output layer were determined by the number of input and
output parameters as shown in Figures 3 and 4.

Each neuron computes  a  linear  combination  of  the  inputs  vector  using new activation function
(combination of inner product and distance based activation functions) from the connections feeding
into them using Equation 4.
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The linear combined activation functions are transformed using the new transfer function (biradial
transfer function) shown in equation 7. However, the output obtained serves as an input to next neurons
in the next layer. The output signal can then be interpreted as the response of the artificial  neural
network to the given input stimulus (Awu et al., 2016).

Training of the network was aimed to determine the main control parameters of the artificial neural
network.  The processes of estimating these parameters are known as neural network learning. The
training type used in this study was basically supervised training. In supervised training, the network
compares the network generated values with the target values.  The training algorithm used for the
network was adopted  from the  proposed c3sep algorithm by Growchoski  et  al. (2008).  The error
resulting from the comparison is computed using equation 9. The network was trained under 2000
iterations

E (x )= 1
2∑x ( y (x )−c(x) )2+⋋1∑

x

((1−c (x )) y (x) )−⋋2∑
x

c (x ) y (x)                  (9)

where c (x )={0,1} is the input vector (x) and y (x )=∑~G (x) is the actual network output. All the

synaptic weights in the network were randomized between ±0.5 , learning rate of 0.4 and momentum

of 0.5. The first term in Equation 9 is the sum-of-squares error function (equation 10), whereas the
second and third terms in Equation 9 are the penalty ⋋1 and reward ⋋2  factor respectively. As the

penalty factor increases the reward factor decreases the total error for the input vectors x i  from the
c (x1)=1 class that fill into cluster of the vectors from the opposite class 1.

E= 1
2∑n ∑

k
{ yk (xn )−tnk }

2
   (10)

where tnk is the target value for output neuron  k  when the network is presented with input vector

xn .

Normalization of the data set is highly essential to enable the network outputs to remain within the
range of the network output function and also for all data to receive equal treatment during training as
well  as  to  enhance  the  efficiency  of  the  network  training  algorithm.  The  significance  of  data
normalization should not be underestimated. In this study, the data were normalized with respect to the
range of all values between 0 to 1 using equations 11: 

N k=
Rk−Mink
Maxk−Mink

   (11)

where: Rk  is the real value applied to neuron k, N k is the normalization value calculated for neuron k.
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Statistical Model Evaluation 

The  statistical  measurements  used  to  evaluate  the  performance  of  the  artificial  neural  network
models in this study include: the coefficient of multiple determination (R2), the mean squared error
(MSE), and the root mean squared error (RMSE) (Equations 12, 13, and 14 respectively (Abrahart et
al., 2005)). 

R2=
∑
i=1

n

(Qi−Q́ )−(Q̂i−Q̀ )2

√∑
i=1

n

(Q i−Q́ )2∑
i=1

n

Qi−Q̀
2

   (12)

MSE=
∑
i=1

n

(Qi−Q̂ i)
2

n
   (13)

RMSE=
√∑
i=1

n

(Qi−Q̂i )
2

n
   (14)

where: Qi are the n modelled flows, Q̂i are the n observed flows, Q́ is the mean of the observed

flows and Q̀ is the mean of the modelled flows. 

The R2 model efficiency criterion as suggested by Nash and Sutcliffe is closely linked to the least-
squares objective function being expressed as the sum of the squares of the differences between the
models  estimated  and observed discharge.  The R2 criterion  in  essence,  is  a  global  measure of  the
performance of  the substantive model  relative  to  that  of  the  original  model.  These  are  correlation
statistics that measure the goodness of fit of modelled data with respect to observed data. Abrahart et
al. (2005) reported that R2 ranges from –1 (perfect negative correlation), through 0 (no correlation) to
+1 (perfect positive correlation), also, that mean squared errors (MSE) provide a good measure of the
goodness-of-fit  at  high  flows,  while  root  mean  squared  errors  (RMSE)  provide  a  more  balanced
perspective of the goodness of fit at moderate flows. 

DISCUSSION OF RESULTS

This study deals with the optimization and application of the neural network architecture that are
biologically inspired by the cell  division architectures, linear combination of the inner product and
distanced based activation functions, products of window type localized sigmoidal transfer function
and c3sep training algorithm on rainfall-riverflow modelling of Oyun River. The products of window
type transfer function (new transfer function) which is based on arithmetic operation functions don’t
have exponential functions, this made the neuron processing faster and save computational cost. The
artificial  neural  network (ANN) models  used  were  based  on the  architecture  of  the  Feed-Forward
Multilayer Perceptron (FFMLP). The neural network architecture used were driven by the biological
cell division architectures of mitosis and meiosis cell division architectures. Two ANN models utilizing
the feed-forward architecture for mitosis and meiosis architectures were developed. Each ANN model
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were  trained  for  three  different  hidden  layers.  Every  neural  network  model  uses  seasonal  river
discharge and rainfall values as their external input. The network performance were evaluated for the 3
different hidden layers for mitosis and meiosis feed-forward neural network architectures respectively
as shown in Table 2 and 3.

Table 1. Number of neurons contained in the 3 different hidden layers for mitosis and meiosis feed-
forward neural network architecture.

Description ANN 1 (mitosis architecture) ANN 2 (meiosis architecture)
1st hidden layer 4 8
2nd hidden layer 8 32
3rd hidden layer 16 128

The results of the coefficient of multiple determination (R2), the mean squared error (MSE) and the root
mean squared error (RMSE) are shown in Tables 2 and 3.

Table 2. The R2, MSE and RMSE efficiency values ANN 1model (mitosis architecture).

Description 1st Hidden Layer 2nd Hidden Layer 3rd Hidden Layer
Calibration R2 (%) 80.07 82.03 96.74
Validation R2 (%) 76.12 78.75 92.40
MSE 0.56 0.59 0.04
RMSE (m3/s) 0.75 0.70 0.19

Table 3. The R2, MSE and RMSE efficiency values ANN 2 model (meiosis architecture).

Description 1st Hidden Layer 2nd Hidden Layer
3rd Hidden
 Layer

Calibration R2 (%) 92.68 98.19 99.57
Validation R2 (%) 89.34 94.08 95.45
MSE 0.486 0.025 0.024
RMSE (m3/s) 0.698 0.159 0.154

As observed in Tables 2 and 3, all the developed artificial neural network models performed very
well as their R2 values were very close  to +1 which infer a perfect positive correlation. Generally, it
was observed from Table 2 and 3 that R2 values varied from one decimal places both for calibration and
validations respectively and increases as the hidden layer increases. The modeled results showed that
ANN 2 that uses, meiosis feed-forward architecture with 3 hidden layers performed better with R2

value of 99.57% and 95.45% for calibration and validation than other ANN models. The ANN1 model
with mitosis structure has R2 values ranged from 80.07% to 96.74% and 76.12% to 92.40% for model
calibration and validation while the MSE and RMSE ranged from 0.040 to 0.560 and 0.190 m3/s to
0.750 m3/s respectively. The ANN2 model with meiosis structure has R2 values range from 92.68% to
99.57% and 89.34% to 95.45% for model calibration and validation while the MSE and RMSE ranged
from 0.468 to 0.024 and 0.698 m3/s to 0.154 m3/s respectively. Generally, ANN2 models that uses
Meiosis feed-forward multilayer architecture performed better than ANN1 models that uses mitosis
feed-forward multilayer architecture (Figure 10 and 11). From the neural network architecture, it was
observed that the meiosis feed-forward neural network architecture (MeFFNNA) has almost double
neurons in every hidden layer when compared to the mitosis feed-forward neural network architecture
(MiFFNNA). This could have been responsible for a better simulation performance by meiosis feed
forward neural network architecture (MeFFNNA).
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Figure 10. ANN1 (Mitosis structure) model.

Figure 11. ANN2 (Meiosis structure) model.

CONCLUSION AND RECOMMENDATION

Artificial  neural  network  modelling  for  Oyun River  were  developed using  an  optimized neural
network architecture that were driven by biological cell division architectures and a products window
type  localized  sigmoidal  (biradial)  transfer  functions.  A c3sep algorithm was  used  in  the  network
training.  The neural  network  learning from statistical  point  of  view requires  approximation of  the
complicated density and flexible  transfer functions that  are as important  as good architectures and
learning algorithm.  From the study a new activation function derived from linear combination of inner
products  and  distance  based  function  were  used  together  with  biradial  output  functions.  Their
application  on  rainfall-riverflow modelling  was  to  evaluate  its  application  suitability. The  greatest
advantage of the new transfer function comes from their separability which is the most disadvantage of
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sigmoidal function. The new transfer functions used in this study contain 3N-dimensional parameters
per one unit and are flexible in representing various probability density. The optimized neural network
architecture and the new transfer function was tested on a rainfall-riverflow modelling for Oyun River.
The developed ANN models was based on the function and structure of a feed-forward multilayer
perceptron. 

Generally, the results reveals that the biologically inspired neural network architecture of meiosis
performed better than the mitosis structure and the new transfer function is promising to be a good
approximator, since error noticed in the comparison of actual and modelled output is very minimal. It is
therefore concluded that the biologically inspired neural  network architecture and the new transfer
function can be applied for rainfall-riverflow modelling not only for Oyun River but for any small to
medium river catchment globally, provided the neural network is well-trained.

The results obtained from this study will provide large-scale information on the application of the
biologically  inspired  neural  network  architecture  and  new  transfer  functions  to  rainfall-riverflow
modelling and also serve as a guide to governments, agencies for better policy and decision making for
integrated land and water resources modelling.

It is recommended that, further combination of new transfer functions with the biologically inspired
neural network architecture and their application to hydrological modelling should be investigated.
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	Artificial Neural Network (ANN) architecture and transfer functions had become as essential as the network training algorithm. This study presents the optimization of neural network architecture that were driven by the biological cell division architectures together with products of two window type localized sigmoidal (biradial) transfer functions on Oyun River modelling to determine their suitability for rainfall-riverflow modelling. Hydro-meteorological data used for the model study includes seasonal river discharge and rainfall values. Two ANN models with three different hidden layers each for mitosis and meiosis feed-forward architecture were developed. The ANN1 models with Mitosis Feed-Forward Neural Network Architecture (MiFFNNA) has R2 values ranged from 80.07% to 96.74% and 76.12% to 92.40% for model calibration and validation while the MSE and RMSE values ranged from 0.040 to 0.560 and 0.190 m3/s to 0.750 m3/s respectively. The ANN2 models with Meiosis Feed-Forward Neural Network Architecture (MeFFNNA) has R2 values ranged from 92.68% to 99.57% and 89.34% to 95.45% for model calibration and validation while the MSE and RMSE values ranged from 0.468 to 0.024 and 0.698 m3/s to 0.154 m3/s respectively. The results revealed that the ANN models using meiosis feed-forward architecture and window type sigmoidal transfer functions is simulate better and promising to be a good approximator for rainfall-riverflow modelling. Further combination of new transfer functions with the biologically inspired neural network architecture and their application to hydrological modelling should be encouraged.
	INTRODUCTION
	Rainfall-riverflow processes account for one aspect of hydrologic cycle that is characterized by a continuous movement of water leaving the earth’s surface and eventually returning in the form of precipitation. Hydrologic modelling is a prerequisite for operational flood risk management (Schumann, 2011). Hydrologic modelling typically relate the known input (hydro-meteorological) to the unknown output (riverflow).
	Recently, artificial neural network has become a powerful tool in the hands of hydrologists for hydrologic modelling, flood forecasting, etc.
	Artificial Neural Network (ANN) has been successfully applied across an extraordinary application domains (Varoonchotikul, 2003). However, knowledge regarding artificial neural network modelling using biologically inspired architecture and new transfer functions remains highly pertinent as this study intends to shed more light on the potential of a biologically inspired architecture and new transfer function that is capable and flexible enough of approximating feature space with small adaptive weight.
	Karim (2009) demonstrated ANN’s ability as a universal approximator when applied to complex systems that may be poorly described or understood using mathematical equations. Features that makes artificial neural network a better modelling tool includes its ability to solve problems where it is effectively impossible to get primary data as in the case of groundwater chemistry (Gumrah et al., 2000), where processes are highly non-linear and spatially and temporally variant (Islam and Kothari, 2000), artificial neural network handles incomplete, noisy and ambiguous data.
	Smith (2001) describes neural network as “a form of multiprocessor computer system” with simple processing neurons, a high degree of interconnection, simple scalar messages and Adaptive interaction between elements.
	Adaptive systems of the Artificial Neural Network (ANN) (Duch and Jankowski, 1999) type were initially motivated by the parallel processing capabilities of the biological brains, however, studies have shown that the processing elements and the architectures used in artificial neural networks have little in common with biological architectures. Expert’s holds the opinion that neural network architecture and transfer functions that would fully behave like the biological systems would approximate better functions with minimal inputs and computational cost. Form l990’s scientist have been trying to develop a neural network architecture within the domain of multilayer perceptron that would be fully biologically inspired. A breakthrough in this would be a great contribution in the world of artificial intelligent. In view of the above, this study developed neural network models using neural network architecture that are inspired by the biological cell division structures, window type localized sigmoidal transfer function and c3sep training algorithm.
	Artificial neural network transfer functions determine the way signals are processed by the network individual neurons. Also, transfer function enables the tessellation of the parameter space in the most flexible ways using the lowest number of adaptive weight. There are numerous transfer functions among which are sigmoidal transfer function, hence, sigmoidal transfer functions are more frequently used in hydrologic modelling but is not flexible enough to describe an arbitrarily shaped density distributions of the multi-dimensional input space with small adaptive weights (Pallav, 2003).
	The objectives of this study was to optimize and apply a neural network architecture that are inspired by the biological cell division architectures and a window type localized sigmoidal (biradial) arbitrarily shaped density distributions of the multidimensional input vector on Oyun River with a view of establishing their effects on rainfall-riverflow modelling using some hydro-meteorological inputs. The results obtained from this study will provide large-scale information on the development and application of the biologically inspired neural network architecture and new transfer functions that will serves computational cost and are quite flexible enough to describe an of establishing their effects on rainfall-riverflow modelling using some hydro-meteorological inputs. The results obtained from this study will provide large-scale information on the development and application of the biologically inspired neural network architecture and new transfer functions to rainfall-riverflow modelling and also will serve as a guide on integrated land and water resources modelling.
	HYDROLOGICAL MODELLING OF OYUN RIVER
	Artificial neural networks were driven by the highly interconnected parallel processing capabilities of the biological brains to approximate unknown function from the space of inputs X to the space of outputs Y = FW(X).
	The performance of a trained neural network depends largely on the network architecture, the transfer functions and the learning algorithm. From the statistical point of view, an adaptive systems should approximate the density of joint probability p(X;Y) or the posterior probability p(Y;X) of the input-output values. Recent emphasis on the application of neural network for hydrologic modelling are commonly based on the network learning algorithms forgetting the great importance of the network architectures and transfer functions.
	The neural network architectures as applied in hydrologic modelling before now are selected on the basis of the developer’s knowledge or by trial and error methods. However, this study considered creating a neural network architecture that are driven by the biological processes of cell division architecture which will serve computational cost while offering a better simulation. Studies has shown that Islam et al. (2014) optimized a neural network architecture using a genetic algorithm for electrical load forecasting.
	There are two functions that determine the way signals are been processed by network neurons. These include the activation function I(x) which determines the total signal a neuron receives and the output function o(I), which determine neuron’s signal processing. These two functions put together determine the values of the network outgoing signals. The combination of the activation and the output functions offers the transfer function o(I(x)). The transfer function is however defined by the N-dimensional input space. The transfer functions can be local if its values are significantly different from zero in a finite area of the input space; otherwise the function is non-local.
	Before now the use of sigmoidal transfer functions had become popular among hydrologists when solving hydrologic problems, this may be due to its commonly believed that the activity of biological neurons follows such sigmoidal transfer function and also it is continuously differentiable. Neither the sigmoidal or Gaussian transfer functions that are commonly used for hydrologic modelling is flexible enough to describe an arbitrarily shaped decision borders in multi-dimensional input space using a small number of adaptive weight. Nevertheless, no study have shed more light or investigate the combination and use of new transfer functions in rainfall-riverflow modelling. Thus, this study tends to show the potential hidden in the use of biologically inspired neural network architecture and a new transfer function (biradial) for rainfall-riverflow modelling.
	RESEARCH METHODOLOGY
	Study Area and Data Collection
	The study area for the application of the optimized neural network architecture and the new transfer function, Oyun River, lies in the sub-humid climatic zone. Oyun River is about 20 km to Ilorin the Kwara State capital. It has an estimated terrain elevation of 370 m above sea level and lies on Longitudes 4o30’ East and Latitude 8o26’N (Awu et al., 2016). Rain normally starts falling in April and stop late October, with June and September recording the highest rainfall values while the dry season lasts from November to March. The mean annual rainfall values of the study area is about 1700 mm while the mean monthly maximum and minimum temperature values in the basin are 31oC and 29oC respectively with the highest temperature values recorded in the months of February through April. The potential evapo-transpiration of the area is between 1500 mm to 1700 mm per annum (Manta et al., 2010). Figure 1 shows the catchment area of Oyun river basin enclosed within the thick black.
	
	Figure 1: Catchment Area of Oyun River (Awu et al., 2016)
	Oyun River catchment is a relatively small catchment with elongated narrow shape and non-steep slope of 830 km2, 0.57%, 0.46 and 0.35 for basin area, slope, elongation and circulatory ratio respectively, which contributed to relatively slower draining of water into the river (Awu et al., 2016). The application of the biologically inspired neural network architecture and new transfer function on rainfall-riverflow modelling was based on the hydro-meteorological data collected from Meteorological Unit of the Land and Water Engineering Department of the National Centre for Agricultural Mechanization (NCAM), Ilorin. NCAM is located at km 20 Ilorin-Lokoja Highway, Ilorin, Kwara State, Nigeria.
	The hydro-meteorological data collected includes seasonal river discharge and rainfall values. The hydro-meteorological data were divided into two sets: the calibration set and the validation set. The calibration set was based on a historical data consisting of 80% of the total data while the validation set was based on futuristic data consisting of 20% of the total data (5-fold cross validation method was used). The main reason of dividing the data into three sets is to avoid overfitting the model. The neural network used in this study is based on code I adapted from David Miller's C++ neural network tutorial (http://www.millermattson.com/dave/?p=54) into visual basic for better understanding.
	Neural Network Architecture Driven by Biological Cell Division Architectures
	Different neural network architectural approaches may be used to search for best system approximation. Before now, the architectures used in artificial neural networks have little in common with biological structures and could be responsible for yet-to-breakthrough in a neural network development that behave exactly like biological counterpart. Neural network architecture can be in the form of feed-forward or recurrent architecture that consist several processing elements known as neurons that are arranged in layer by layer basis. In this study a feed-forward neural network architecture that was driven by the biological cell division architectures was considered.
	Typically, there are two types of biological cell division architectures namely: mitosis and meiosis cell division architectures. Mitosis is a form of eukaryotic cell division that produces two daughter cells whereas meiosis produces four daughter cells as shown in Figure 2.
	
	Figure 2: Biological Mitosis and Meiosis Cell Division Architectures (source: http://bio1510.biology.gatech.edu)
	
	Figure 3: Schematic Diagram of a Mitosis Feed-Forward Neural Network Architecture (MiFFNNA)
	Adopting the cell divisional architectures into a feed-forward architectures having two input parameters, firstly into mitosis structure and secondly into meiosis structure (Figures 3 and 4).
	
	Figure 4: Schematic Diagram of a Meiosis Feed-Forward Neural Network Architecture (MeFFNNA)
	The processing of a single neuron is shown in Figure 5.
	
	Figure 5: Activation of a single neuron (Modified from Debes et al., 2005)
	In Mitosis Feed-Forward Neural Network Architecture (MiFFNNA), every neuron in the preceding layer is accountable for two neurons in the succeeding layer while in Meiosis Feed-Forward Neural Network architecture (MeFFNNA), every neuron in the preceding layer is accountable for four neurons in the succeeding layer respectively. The signal processing in neural network starts from the first hidden layer.
	New Transfer Functions
	The activation and output functions are the two functions when combined will give network transfer functions. The sigmoidal activation function shown in Equation 1 (Debes et al., 2005), is used in neural network models not only because of their biological motivations, but due to their contours of constant value I(x) = const that are defined by hyperplanes.
	(1)
	where Ii is the total activation function, Wij is the connection strength and Xj is the neuron signals. Statistically, the activation functions are classified into inner products as a method based on discrimination using hyperplanes for tessellation of the input space and the distance based methods on clusterization in which similarities are calculated using some kind of a distance measure as shown in Equations 2 and 3 (Duch and Jankowski, 1999).
	Inner product activation function: (2)
	Distance based activation function: (3)
	Before now, studies have shown that researchers uses either the inner product or distance based activation functions as a stand-alone activation function in their neuron processing, but this study considered using a new activation function that was driven from linear combination of the final vector components of the inner product and the distance based activation function to represent complex decision borders as shown in Equation 4 (Figure 6)
	(4)
	
	Figure 6: Taxonomy of activation function (Source: Duch and Jankowski, 1999)
	Likewise, the output functions of sigmoidal type (Equation 8) are not only natural from the statistical point of view but are also a good squashing functions for unbounded activation. Sigmoidal output functions have non-local behavior. Hence, this study considered the use of a products window type transfer function (new transfer function) and the adoption of a new algorithm “c3sep algorithm” proposed by Growchoski et.al (2008) for rainfall-riverflow modelling. The window type transfer function (new transfer function) was based on arithmetic operation functions that don’t have exponential functions, this will make the neuron processing faster and save computational cost. Since calculation of exponents in logistic output function is much slower than the simple arithmetic operations other functions of sigmoidal shape such as window type transfer function are hereby used to speed up computations.
	However, the new transfer function (Equation 7) used in this study is a products of two simple window type localized sigmoidal functions (Equation 5).
	(5)
	After normalization the form becomes Equation (6)
	(6)
	Growchoski et.al (2007) uses the window type localized sigmoidal functions to train his neural network using traditional error minimization algorithm. He found out that the new transfer functions is flexible, producing decision regions of arbitrary shapes for approximations. The general form of the window type localized sigmoidal functions is shown in Equation 7 (Growchoski et.al (2008).
	(7)
	where: (8)
	The first sigmoidal factor in the product is growing for increasing input xi while the second is decreasing, localizing the function around ti. Shape adaptation of the densityis possible by shifting centers t, rescaling b and s. Exponentialsandare used instead of si and bi to prevent oscillations during learning procedure. Figures 7, 8 and 9 are schematic diagrams of sigmoidal transfer functions and products of window type localized sigmoidal functions (new transfer function). The products of logistic sigmoidal functions is known as biradial transfer function.
	
	Figure 7. Sigmoidal transfer function (Source: Duch and Jankowski, 1999).
	
	Figure 8. Window type transfer function (New transfer function) (Source: Duch and Jankowski, 1999).
	
	Figure 9. Sigmoidal transfer function fitted (Debes et al., 2005)
	Application of the Optimized Neural Network Architecture and New Transfer Functions to Rainfall-Riverflow Modelling
	This study proposed and apply optimized neural network architecture that are driven by biological cell division structures and window type localized sigmoidal transfer functions (new transfer function) on rainfall-riverflow modelling. The neural network used c3sep training algorithm as proposed by Growchoski et al. (20108). They were applied to a feed-forward multilayer perceptron (FFMLP) network for rainfall-riverflow modelling of Oyun River catchment using the seasonal river discharge and rainfall values that had occurred earlier at times t-n. A feed-forward multilayer perceptron is a structure of a neural network that has being proven to be the best neural network structure for hydrological modelling (Shamseldin, 2010). In multilayer perceptron, there exists between the input and output layers, the hidden layer. There can be one or more hidden layers with many neurons that can be varied to adapt to the complexity of the relationships between input and output variables. Information is transmitted through the connections between neurons in layer-by-layers basis with the aid of connections called synaptic weights (Awu et al., 2016). The input layer receives input information and feed-forward same through the output layer which produces output information. The number of neurons in the input layer and the output layer were determined by the number of input and output parameters as shown in Figures 3 and 4.
	Each neuron computes a linear combination of the inputs vector using new activation function (combination of inner product and distance based activation functions) from the connections feeding into them using Equation 4.
	The linear combined activation functions are transformed using the new transfer function (biradial transfer function) shown in equation 7. However, the output obtained serves as an input to next neurons in the next layer. The output signal can then be interpreted as the response of the artificial neural network to the given input stimulus (Awu et al., 2016).
	Training of the network was aimed to determine the main control parameters of the artificial neural network. The processes of estimating these parameters are known as neural network learning. The training type used in this study was basically supervised training. In supervised training, the network compares the network generated values with the target values. The training algorithm used for the network was adopted from the proposed c3sep algorithm by Growchoski et al. (2008). The error resulting from the comparison is computed using equation 9. The network was trained under 2000 iterations
	(9)
	where is the input vector (x) andis the actual network output. All the synaptic weights in the network were randomized between, learning rate of 0.4 and momentum of 0.5. The first term in Equation 9 is the sum-of-squares error function (equation 10), whereas the second and third terms in Equation 9 are the penaltyand reward factor respectively. As the penalty factor increases the reward factor decreases the total error for the input vectors xi from the class that fill into cluster of the vectors from the opposite class 1.
	(10)
	whereis the target value for output neuron k when the network is presented with input vector.
	Normalization of the data set is highly essential to enable the network outputs to remain within the range of the network output function and also for all data to receive equal treatment during training as well as to enhance the efficiency of the network training algorithm. The significance of data normalization should not be underestimated. In this study, the data were normalized with respect to the range of all values between 0 to 1 using equations 11:
	(11)
	where: is the real value applied to neuron k, is the normalization value calculated for neuron k.
	Statistical Model Evaluation
	The statistical measurements used to evaluate the performance of the artificial neural network models in this study include: the coefficient of multiple determination (R2), the mean squared error (MSE), and the root mean squared error (RMSE) (Equations 12, 13, and 14 respectively (Abrahart et al., 2005)).
	(12)
	(13)
	(14)
	where:are the n modelled flows,are the n observed flows,is the mean of the observed flows andis the mean of the modelled flows.
	The R2 model efficiency criterion as suggested by Nash and Sutcliffe is closely linked to the least-squares objective function being expressed as the sum of the squares of the differences between the models estimated and observed discharge. The R2 criterion in essence, is a global measure of the performance of the substantive model relative to that of the original model. These are correlation statistics that measure the goodness of fit of modelled data with respect to observed data. Abrahart et al. (2005) reported that R2 ranges from –1 (perfect negative correlation), through 0 (no correlation) to +1 (perfect positive correlation), also, that mean squared errors (MSE) provide a good measure of the goodness-of-fit at high flows, while root mean squared errors (RMSE) provide a more balanced perspective of the goodness of fit at moderate flows.
	DISCUSSION OF RESULTS
	This study deals with the optimization and application of the neural network architecture that are biologically inspired by the cell division architectures, linear combination of the inner product and distanced based activation functions, products of window type localized sigmoidal transfer function and c3sep training algorithm on rainfall-riverflow modelling of Oyun River. The products of window type transfer function (new transfer function) which is based on arithmetic operation functions don’t have exponential functions, this made the neuron processing faster and save computational cost. The artificial neural network (ANN) models used were based on the architecture of the Feed-Forward Multilayer Perceptron (FFMLP). The neural network architecture used were driven by the biological cell division architectures of mitosis and meiosis cell division architectures. Two ANN models utilizing the feed-forward architecture for mitosis and meiosis architectures were developed. Each ANN model were trained for three different hidden layers. Every neural network model uses seasonal river discharge and rainfall values as their external input. The network performance were evaluated for the 3 different hidden layers for mitosis and meiosis feed-forward neural network architectures respectively as shown in Table 2 and 3.
	Table 1. Number of neurons contained in the 3 different hidden layers for mitosis and meiosis feed-forward neural network architecture.
	Description
	ANN 1 (mitosis architecture)
	ANN 2 (meiosis architecture)
	1st hidden layer
	4
	8
	2nd hidden layer
	8
	32
	3rd hidden layer
	16
	128
	The results of the coefficient of multiple determination (R2), the mean squared error (MSE) and the root mean squared error (RMSE) are shown in Tables 2 and 3.
	Table 2. The R2, MSE and RMSE efficiency values ANN 1model (mitosis architecture).
	Description
	1st Hidden Layer
	2nd Hidden Layer
	3rd Hidden Layer
	Calibration R2 (%)
	80.07
	82.03
	96.74
	Validation R2 (%)
	76.12
	78.75
	92.40
	MSE
	0.56
	0.59
	0.04
	RMSE (m3/s)
	0.75
	0.70
	0.19
	Table 3. The R2, MSE and RMSE efficiency values ANN 2 model (meiosis architecture).
	Description
	1st Hidden Layer
	2nd Hidden Layer
	3rd Hidden
	Layer
	Calibration R2 (%)
	92.68
	98.19
	99.57
	Validation R2 (%)
	89.34
	94.08
	95.45
	MSE
	0.486
	0.025
	0.024
	RMSE (m3/s)
	0.698
	0.159
	0.154
	As observed in Tables 2 and 3, all the developed artificial neural network models performed very well as their R2 values were very close to +1 which infer a perfect positive correlation. Generally, it was observed from Table 2 and 3 that R2 values varied from one decimal places both for calibration and validations respectively and increases as the hidden layer increases. The modeled results showed that ANN 2 that uses, meiosis feed-forward architecture with 3 hidden layers performed better with R2 value of 99.57% and 95.45% for calibration and validation than other ANN models. The ANN1 model with mitosis structure has R2 values ranged from 80.07% to 96.74% and 76.12% to 92.40% for model calibration and validation while the MSE and RMSE ranged from 0.040 to 0.560 and 0.190 m3/s to 0.750 m3/s respectively. The ANN2 model with meiosis structure has R2 values range from 92.68% to 99.57% and 89.34% to 95.45% for model calibration and validation while the MSE and RMSE ranged from 0.468 to 0.024 and 0.698 m3/s to 0.154 m3/s respectively. Generally, ANN2 models that uses Meiosis feed-forward multilayer architecture performed better than ANN1 models that uses mitosis feed-forward multilayer architecture (Figure 10 and 11). From the neural network architecture, it was observed that the meiosis feed-forward neural network architecture (MeFFNNA) has almost double neurons in every hidden layer when compared to the mitosis feed-forward neural network architecture (MiFFNNA). This could have been responsible for a better simulation performance by meiosis feed forward neural network architecture (MeFFNNA).
	
	Figure 10. ANN1 (Mitosis structure) model.
	
	CONCLUSION AND RECOMMENDATION
	Artificial neural network modelling for Oyun River were developed using an optimized neural network architecture that were driven by biological cell division architectures and a products window type localized sigmoidal (biradial) transfer functions. A c3sep algorithm was used in the network training. The neural network learning from statistical point of view requires approximation of the complicated density and flexible transfer functions that are as important as good architectures and learning algorithm. From the study a new activation function derived from linear combination of inner products and distance based function were used together with biradial output functions. Their application on rainfall-riverflow modelling was to evaluate its application suitability. The greatest advantage of the new transfer function comes from their separability which is the most disadvantage of sigmoidal function. The new transfer functions used in this study contain 3N-dimensional parameters per one unit and are flexible in representing various probability density. The optimized neural network architecture and the new transfer function was tested on a rainfall-riverflow modelling for Oyun River. The developed ANN models was based on the function and structure of a feed-forward multilayer perceptron.
	Generally, the results reveals that the biologically inspired neural network architecture of meiosis performed better than the mitosis structure and the new transfer function is promising to be a good approximator, since error noticed in the comparison of actual and modelled output is very minimal. It is therefore concluded that the biologically inspired neural network architecture and the new transfer function can be applied for rainfall-riverflow modelling not only for Oyun River but for any small to medium river catchment globally, provided the neural network is well-trained.
	The results obtained from this study will provide large-scale information on the application of the biologically inspired neural network architecture and new transfer functions to rainfall-riverflow modelling and also serve as a guide to governments, agencies for better policy and decision making for integrated land and water resources modelling.
	It is recommended that, further combination of new transfer functions with the biologically inspired neural network architecture and their application to hydrological modelling should be investigated.
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